SameerArz commited on
Commit
3fdbd1e
·
verified ·
1 Parent(s): 3a4a967

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -19
app.py CHANGED
@@ -30,7 +30,7 @@ def generate_tutor_output(subject, difficulty, student_input):
30
  completion = client.chat.completions.create(
31
  messages=[{
32
  "role": "system",
33
- "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
34
  }, {
35
  "role": "user",
36
  "content": prompt,
@@ -63,14 +63,40 @@ def generate_images(text, selected_model):
63
 
64
  return results
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  # Set up the Gradio interface
67
  with gr.Blocks() as demo:
68
  gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
69
 
70
- # Section for generating Text-based output (lesson, question, feedback)
71
  with gr.Row():
72
  with gr.Column(scale=2):
73
- # Input fields for subject, difficulty, and student input for textual output
74
  subject = gr.Dropdown(
75
  ["Math", "Science", "History", "Literature", "Code", "AI"],
76
  label="Subject",
@@ -89,15 +115,13 @@ with gr.Blocks() as demo:
89
  submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
90
 
91
  with gr.Column(scale=3):
92
- # Output fields for lesson, question, and feedback
93
  lesson_output = gr.Markdown(label="Lesson")
94
  question_output = gr.Markdown(label="Comprehension Question")
95
  feedback_output = gr.Markdown(label="Feedback")
96
 
97
- # Section for generating Visual output
98
  with gr.Row():
99
  with gr.Column(scale=2):
100
- # Input fields for text and model selection for image generation
101
  model_selector = gr.Radio(
102
  ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
103
  label="Select Image Generation Model",
@@ -106,18 +130,40 @@ with gr.Blocks() as demo:
106
  submit_button_visual = gr.Button("Generate Visuals", variant="primary")
107
 
108
  with gr.Column(scale=3):
109
- # Output fields for generated images
110
  output1 = gr.Image(label="Generated Image 1")
111
  output2 = gr.Image(label="Generated Image 2")
112
  output3 = gr.Image(label="Generated Image 3")
113
-
114
- gr.Markdown("""
115
- ### How to Use
116
- 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
117
- 2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
118
- 3. Review the AI-generated content to enhance your learning experience!
119
- """)
120
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  def process_output_text(subject, difficulty, student_input):
122
  try:
123
  tutor_output = generate_tutor_output(subject, difficulty, student_input)
@@ -126,21 +172,27 @@ with gr.Blocks() as demo:
126
  except:
127
  return "Error parsing output", "No question available", "No feedback available"
128
 
 
129
  def process_output_visual(text, selected_model):
130
  try:
131
- images = generate_images(text, selected_model) # Generate images
132
  return images[0], images[1], images[2]
133
  except:
134
  return None, None, None
135
-
136
- # Generate Text-based Output
 
 
 
 
 
 
137
  submit_button_text.click(
138
  fn=process_output_text,
139
  inputs=[subject, difficulty, student_input],
140
  outputs=[lesson_output, question_output, feedback_output]
141
  )
142
 
143
- # Generate Visual Output
144
  submit_button_visual.click(
145
  fn=process_output_visual,
146
  inputs=[student_input, model_selector],
 
30
  completion = client.chat.completions.create(
31
  messages=[{
32
  "role": "system",
33
+ "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
34
  }, {
35
  "role": "user",
36
  "content": prompt,
 
63
 
64
  return results
65
 
66
+ # New function for processing visual input
67
+ def process_visual_input(image, task, question=""):
68
+ """Processes the uploaded image based on the selected task."""
69
+ if task == "Image Captioning":
70
+ prompt = "Describe this image in detail."
71
+ elif task == "OCR (Text Extraction)":
72
+ prompt = "Extract all readable text from this image."
73
+ elif task == "Visual Question Answering":
74
+ prompt = f"Answer this question based on the image: {question}"
75
+ else:
76
+ return "Invalid task selected."
77
+
78
+ # Sending image + prompt to the model
79
+ completion = client.chat.completions.create(
80
+ messages=[{
81
+ "role": "system",
82
+ "content": "You are an expert AI that analyzes images and provides captions, extracts text, or answers visual questions."
83
+ }, {
84
+ "role": "user",
85
+ "content": prompt,
86
+ }],
87
+ model="llava-1.5-7b", # Using a vision-language model
88
+ max_tokens=500,
89
+ )
90
+
91
+ return completion.choices[0].message.content
92
+
93
  # Set up the Gradio interface
94
  with gr.Blocks() as demo:
95
  gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
96
 
97
+ # Section 1: Text-based Learning (Lesson, Question, Feedback)
98
  with gr.Row():
99
  with gr.Column(scale=2):
 
100
  subject = gr.Dropdown(
101
  ["Math", "Science", "History", "Literature", "Code", "AI"],
102
  label="Subject",
 
115
  submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
116
 
117
  with gr.Column(scale=3):
 
118
  lesson_output = gr.Markdown(label="Lesson")
119
  question_output = gr.Markdown(label="Comprehension Question")
120
  feedback_output = gr.Markdown(label="Feedback")
121
 
122
+ # Section 2: Text-based Image Generation
123
  with gr.Row():
124
  with gr.Column(scale=2):
 
125
  model_selector = gr.Radio(
126
  ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
127
  label="Select Image Generation Model",
 
130
  submit_button_visual = gr.Button("Generate Visuals", variant="primary")
131
 
132
  with gr.Column(scale=3):
 
133
  output1 = gr.Image(label="Generated Image 1")
134
  output2 = gr.Image(label="Generated Image 2")
135
  output3 = gr.Image(label="Generated Image 3")
136
+
137
+ # Section 3: Visual Input Processing
138
+ with gr.Row():
139
+ with gr.Column(scale=2):
140
+ image_input = gr.Image(label="Upload an Image", type="filepath")
141
+ task_selector = gr.Radio(
142
+ ["Image Captioning", "OCR (Text Extraction)", "Visual Question Answering"],
143
+ label="Select Image Processing Task",
144
+ value="Image Captioning"
145
+ )
146
+ question_input = gr.Textbox(
147
+ placeholder="Enter question (only for VQA)",
148
+ label="Question (Optional)",
149
+ visible=False
150
+ )
151
+ submit_button_visual_input = gr.Button("Process Image", variant="primary")
152
+
153
+ with gr.Column(scale=3):
154
+ visual_output = gr.Markdown(label="Image Analysis Result")
155
+
156
+ # Toggle visibility of question input for VQA
157
+ def toggle_question_visibility(task):
158
+ return gr.update(visible=(task == "Visual Question Answering"))
159
+
160
+ task_selector.change(
161
+ fn=toggle_question_visibility,
162
+ inputs=[task_selector],
163
+ outputs=[question_input]
164
+ )
165
+
166
+ # Process text-based learning
167
  def process_output_text(subject, difficulty, student_input):
168
  try:
169
  tutor_output = generate_tutor_output(subject, difficulty, student_input)
 
172
  except:
173
  return "Error parsing output", "No question available", "No feedback available"
174
 
175
+ # Process image generation
176
  def process_output_visual(text, selected_model):
177
  try:
178
+ images = generate_images(text, selected_model)
179
  return images[0], images[1], images[2]
180
  except:
181
  return None, None, None
182
+
183
+ # Process visual input (image)
184
+ submit_button_visual_input.click(
185
+ fn=process_visual_input,
186
+ inputs=[image_input, task_selector, question_input],
187
+ outputs=[visual_output]
188
+ )
189
+
190
  submit_button_text.click(
191
  fn=process_output_text,
192
  inputs=[subject, difficulty, student_input],
193
  outputs=[lesson_output, question_output, feedback_output]
194
  )
195
 
 
196
  submit_button_visual.click(
197
  fn=process_output_visual,
198
  inputs=[student_input, model_selector],