Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
30 |
completion = client.chat.completions.create(
|
31 |
messages=[{
|
32 |
"role": "system",
|
33 |
-
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way
|
34 |
}, {
|
35 |
"role": "user",
|
36 |
"content": prompt,
|
@@ -63,14 +63,40 @@ def generate_images(text, selected_model):
|
|
63 |
|
64 |
return results
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Set up the Gradio interface
|
67 |
with gr.Blocks() as demo:
|
68 |
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
69 |
|
70 |
-
# Section
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=2):
|
73 |
-
# Input fields for subject, difficulty, and student input for textual output
|
74 |
subject = gr.Dropdown(
|
75 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
76 |
label="Subject",
|
@@ -89,15 +115,13 @@ with gr.Blocks() as demo:
|
|
89 |
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
|
90 |
|
91 |
with gr.Column(scale=3):
|
92 |
-
# Output fields for lesson, question, and feedback
|
93 |
lesson_output = gr.Markdown(label="Lesson")
|
94 |
question_output = gr.Markdown(label="Comprehension Question")
|
95 |
feedback_output = gr.Markdown(label="Feedback")
|
96 |
|
97 |
-
# Section
|
98 |
with gr.Row():
|
99 |
with gr.Column(scale=2):
|
100 |
-
# Input fields for text and model selection for image generation
|
101 |
model_selector = gr.Radio(
|
102 |
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
|
103 |
label="Select Image Generation Model",
|
@@ -106,18 +130,40 @@ with gr.Blocks() as demo:
|
|
106 |
submit_button_visual = gr.Button("Generate Visuals", variant="primary")
|
107 |
|
108 |
with gr.Column(scale=3):
|
109 |
-
# Output fields for generated images
|
110 |
output1 = gr.Image(label="Generated Image 1")
|
111 |
output2 = gr.Image(label="Generated Image 2")
|
112 |
output3 = gr.Image(label="Generated Image 3")
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def process_output_text(subject, difficulty, student_input):
|
122 |
try:
|
123 |
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
@@ -126,21 +172,27 @@ with gr.Blocks() as demo:
|
|
126 |
except:
|
127 |
return "Error parsing output", "No question available", "No feedback available"
|
128 |
|
|
|
129 |
def process_output_visual(text, selected_model):
|
130 |
try:
|
131 |
-
images = generate_images(text, selected_model)
|
132 |
return images[0], images[1], images[2]
|
133 |
except:
|
134 |
return None, None, None
|
135 |
-
|
136 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
submit_button_text.click(
|
138 |
fn=process_output_text,
|
139 |
inputs=[subject, difficulty, student_input],
|
140 |
outputs=[lesson_output, question_output, feedback_output]
|
141 |
)
|
142 |
|
143 |
-
# Generate Visual Output
|
144 |
submit_button_visual.click(
|
145 |
fn=process_output_visual,
|
146 |
inputs=[student_input, model_selector],
|
|
|
30 |
completion = client.chat.completions.create(
|
31 |
messages=[{
|
32 |
"role": "system",
|
33 |
+
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
|
34 |
}, {
|
35 |
"role": "user",
|
36 |
"content": prompt,
|
|
|
63 |
|
64 |
return results
|
65 |
|
66 |
+
# New function for processing visual input
|
67 |
+
def process_visual_input(image, task, question=""):
|
68 |
+
"""Processes the uploaded image based on the selected task."""
|
69 |
+
if task == "Image Captioning":
|
70 |
+
prompt = "Describe this image in detail."
|
71 |
+
elif task == "OCR (Text Extraction)":
|
72 |
+
prompt = "Extract all readable text from this image."
|
73 |
+
elif task == "Visual Question Answering":
|
74 |
+
prompt = f"Answer this question based on the image: {question}"
|
75 |
+
else:
|
76 |
+
return "Invalid task selected."
|
77 |
+
|
78 |
+
# Sending image + prompt to the model
|
79 |
+
completion = client.chat.completions.create(
|
80 |
+
messages=[{
|
81 |
+
"role": "system",
|
82 |
+
"content": "You are an expert AI that analyzes images and provides captions, extracts text, or answers visual questions."
|
83 |
+
}, {
|
84 |
+
"role": "user",
|
85 |
+
"content": prompt,
|
86 |
+
}],
|
87 |
+
model="llava-1.5-7b", # Using a vision-language model
|
88 |
+
max_tokens=500,
|
89 |
+
)
|
90 |
+
|
91 |
+
return completion.choices[0].message.content
|
92 |
+
|
93 |
# Set up the Gradio interface
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
96 |
|
97 |
+
# Section 1: Text-based Learning (Lesson, Question, Feedback)
|
98 |
with gr.Row():
|
99 |
with gr.Column(scale=2):
|
|
|
100 |
subject = gr.Dropdown(
|
101 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
102 |
label="Subject",
|
|
|
115 |
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
|
116 |
|
117 |
with gr.Column(scale=3):
|
|
|
118 |
lesson_output = gr.Markdown(label="Lesson")
|
119 |
question_output = gr.Markdown(label="Comprehension Question")
|
120 |
feedback_output = gr.Markdown(label="Feedback")
|
121 |
|
122 |
+
# Section 2: Text-based Image Generation
|
123 |
with gr.Row():
|
124 |
with gr.Column(scale=2):
|
|
|
125 |
model_selector = gr.Radio(
|
126 |
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
|
127 |
label="Select Image Generation Model",
|
|
|
130 |
submit_button_visual = gr.Button("Generate Visuals", variant="primary")
|
131 |
|
132 |
with gr.Column(scale=3):
|
|
|
133 |
output1 = gr.Image(label="Generated Image 1")
|
134 |
output2 = gr.Image(label="Generated Image 2")
|
135 |
output3 = gr.Image(label="Generated Image 3")
|
136 |
+
|
137 |
+
# Section 3: Visual Input Processing
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column(scale=2):
|
140 |
+
image_input = gr.Image(label="Upload an Image", type="filepath")
|
141 |
+
task_selector = gr.Radio(
|
142 |
+
["Image Captioning", "OCR (Text Extraction)", "Visual Question Answering"],
|
143 |
+
label="Select Image Processing Task",
|
144 |
+
value="Image Captioning"
|
145 |
+
)
|
146 |
+
question_input = gr.Textbox(
|
147 |
+
placeholder="Enter question (only for VQA)",
|
148 |
+
label="Question (Optional)",
|
149 |
+
visible=False
|
150 |
+
)
|
151 |
+
submit_button_visual_input = gr.Button("Process Image", variant="primary")
|
152 |
+
|
153 |
+
with gr.Column(scale=3):
|
154 |
+
visual_output = gr.Markdown(label="Image Analysis Result")
|
155 |
+
|
156 |
+
# Toggle visibility of question input for VQA
|
157 |
+
def toggle_question_visibility(task):
|
158 |
+
return gr.update(visible=(task == "Visual Question Answering"))
|
159 |
+
|
160 |
+
task_selector.change(
|
161 |
+
fn=toggle_question_visibility,
|
162 |
+
inputs=[task_selector],
|
163 |
+
outputs=[question_input]
|
164 |
+
)
|
165 |
+
|
166 |
+
# Process text-based learning
|
167 |
def process_output_text(subject, difficulty, student_input):
|
168 |
try:
|
169 |
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
|
|
172 |
except:
|
173 |
return "Error parsing output", "No question available", "No feedback available"
|
174 |
|
175 |
+
# Process image generation
|
176 |
def process_output_visual(text, selected_model):
|
177 |
try:
|
178 |
+
images = generate_images(text, selected_model)
|
179 |
return images[0], images[1], images[2]
|
180 |
except:
|
181 |
return None, None, None
|
182 |
+
|
183 |
+
# Process visual input (image)
|
184 |
+
submit_button_visual_input.click(
|
185 |
+
fn=process_visual_input,
|
186 |
+
inputs=[image_input, task_selector, question_input],
|
187 |
+
outputs=[visual_output]
|
188 |
+
)
|
189 |
+
|
190 |
submit_button_text.click(
|
191 |
fn=process_output_text,
|
192 |
inputs=[subject, difficulty, student_input],
|
193 |
outputs=[lesson_output, question_output, feedback_output]
|
194 |
)
|
195 |
|
|
|
196 |
submit_button_visual.click(
|
197 |
fn=process_output_visual,
|
198 |
inputs=[student_input, model_selector],
|