SameerArz commited on
Commit
78c1c43
·
verified ·
1 Parent(s): 23d3149

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -28
app.py CHANGED
@@ -1,10 +1,19 @@
1
  import gradio as gr
2
  from groq import Groq
3
  import os
 
4
 
5
- # Initialize Groq client
6
  client = Groq(api_key=os.environ["GROQ_API_KEY"])
7
 
 
 
 
 
 
 
 
 
8
  def generate_tutor_output(subject, difficulty, student_input):
9
  prompt = f"""
10
  You are an expert tutor in {subject} at the {difficulty} level.
@@ -17,29 +26,51 @@ def generate_tutor_output(subject, difficulty, student_input):
17
 
18
  Format your response as a JSON object with keys: "lesson", "question", "feedback"
19
  """
20
-
21
  completion = client.chat.completions.create(
22
- messages=[
23
- {
24
- "role": "system",
25
- "content": "You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students. Your goal is to not just impart knowledge, but to inspire a love for learning and critical thinking.",
26
- },
27
- {
28
- "role": "user",
29
- "content": prompt,
30
- }
31
- ],
32
- model="mixtral-8x7b-32768",
33
  max_tokens=1000,
34
  )
35
-
36
  return completion.choices[0].message.content
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  with gr.Blocks() as demo:
39
- gr.Markdown("# 🎓 Your AI Tutor by Farhan")
40
-
 
41
  with gr.Row():
42
  with gr.Column(scale=2):
 
43
  subject = gr.Dropdown(
44
  ["Math", "Science", "History", "Literature", "Code", "AI"],
45
  label="Subject",
@@ -55,35 +86,66 @@ with gr.Blocks() as demo:
55
  label="Your Input",
56
  info="Enter the topic you want to learn"
57
  )
58
- submit_button = gr.Button("Generate Lesson", variant="primary")
59
 
60
  with gr.Column(scale=3):
 
61
  lesson_output = gr.Markdown(label="Lesson")
62
  question_output = gr.Markdown(label="Comprehension Question")
63
  feedback_output = gr.Markdown(label="Feedback")
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  gr.Markdown("""
66
  ### How to Use
67
- 1. Select a subject from the dropdown.
68
- 2. Choose your difficulty level.
69
- 3. Enter the topic or question you'd like to explore.
70
- 4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
71
- 5. Review the AI-generated content to enhance your learning.
72
- 6. Feel free to ask follow-up questions or explore new topics!
73
  """)
74
 
75
- def process_output(output):
76
  try:
77
- parsed = eval(output)
 
78
  return parsed["lesson"], parsed["question"], parsed["feedback"]
79
  except:
80
  return "Error parsing output", "No question available", "No feedback available"
81
 
82
- submit_button.click(
83
- fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
 
 
 
 
 
 
 
 
84
  inputs=[subject, difficulty, student_input],
85
  outputs=[lesson_output, question_output, feedback_output]
86
  )
 
 
 
 
 
 
 
87
 
88
  if __name__ == "__main__":
89
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
1
  import gradio as gr
2
  from groq import Groq
3
  import os
4
+ import threading # Import threading module
5
 
6
+ # Initialize Groq client with your API key
7
  client = Groq(api_key=os.environ["GROQ_API_KEY"])
8
 
9
+ # Load Text-to-Image Models
10
+ model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
11
+ model2 = gr.load("models/Purz/face-projection")
12
+
13
+ # Stop event for threading (image generation)
14
+ stop_event = threading.Event()
15
+
16
+ # Function to generate tutor output (lesson, question, feedback)
17
  def generate_tutor_output(subject, difficulty, student_input):
18
  prompt = f"""
19
  You are an expert tutor in {subject} at the {difficulty} level.
 
26
 
27
  Format your response as a JSON object with keys: "lesson", "question", "feedback"
28
  """
29
+
30
  completion = client.chat.completions.create(
31
+ messages=[{
32
+ "role": "system",
33
+ "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
34
+ }, {
35
+ "role": "user",
36
+ "content": prompt,
37
+ }],
38
+ model="mixtral-8x7b-32768", # Model for text generation
 
 
 
39
  max_tokens=1000,
40
  )
41
+
42
  return completion.choices[0].message.content
43
 
44
+ # Function to generate images based on model selection
45
+ def generate_images(text, selected_model):
46
+ stop_event.clear()
47
+
48
+ if selected_model == "Model 1 (Turbo Realism)":
49
+ model = model1
50
+ elif selected_model == "Model 2 (Face Projection)":
51
+ model = model2
52
+ else:
53
+ return ["Invalid model selection."] * 3
54
+
55
+ results = []
56
+ for i in range(3):
57
+ if stop_event.is_set():
58
+ return ["Image generation stopped by user."] * 3
59
+
60
+ modified_text = f"{text} variation {i+1}"
61
+ result = model(modified_text)
62
+ results.append(result)
63
+
64
+ return results
65
+
66
+ # Set up the Gradio interface
67
  with gr.Blocks() as demo:
68
+ gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
69
+
70
+ # Section for generating Text-based output (lesson, question, feedback)
71
  with gr.Row():
72
  with gr.Column(scale=2):
73
+ # Input fields for subject, difficulty, and student input for textual output
74
  subject = gr.Dropdown(
75
  ["Math", "Science", "History", "Literature", "Code", "AI"],
76
  label="Subject",
 
86
  label="Your Input",
87
  info="Enter the topic you want to learn"
88
  )
89
+ submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
90
 
91
  with gr.Column(scale=3):
92
+ # Output fields for lesson, question, and feedback
93
  lesson_output = gr.Markdown(label="Lesson")
94
  question_output = gr.Markdown(label="Comprehension Question")
95
  feedback_output = gr.Markdown(label="Feedback")
96
 
97
+ # Section for generating Visual output
98
+ with gr.Row():
99
+ with gr.Column(scale=2):
100
+ # Input fields for text and model selection for image generation
101
+ model_selector = gr.Radio(
102
+ ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
103
+ label="Select Image Generation Model",
104
+ value="Model 1 (Turbo Realism)"
105
+ )
106
+ submit_button_visual = gr.Button("Generate Visuals", variant="primary")
107
+
108
+ with gr.Column(scale=3):
109
+ # Output fields for generated images
110
+ output1 = gr.Image(label="Generated Image 1")
111
+ output2 = gr.Image(label="Generated Image 2")
112
+ output3 = gr.Image(label="Generated Image 3")
113
+
114
  gr.Markdown("""
115
  ### How to Use
116
+ 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
117
+ 2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
118
+ 3. Review the AI-generated content to enhance your learning experience!
 
 
 
119
  """)
120
 
121
+ def process_output_text(subject, difficulty, student_input):
122
  try:
123
+ tutor_output = generate_tutor_output(subject, difficulty, student_input)
124
+ parsed = eval(tutor_output) # Convert string to dictionary
125
  return parsed["lesson"], parsed["question"], parsed["feedback"]
126
  except:
127
  return "Error parsing output", "No question available", "No feedback available"
128
 
129
+ def process_output_visual(text, selected_model):
130
+ try:
131
+ images = generate_images(text, selected_model) # Generate images
132
+ return images[0], images[1], images[2]
133
+ except:
134
+ return None, None, None
135
+
136
+ # Generate Text-based Output
137
+ submit_button_text.click(
138
+ fn=process_output_text,
139
  inputs=[subject, difficulty, student_input],
140
  outputs=[lesson_output, question_output, feedback_output]
141
  )
142
+
143
+ # Generate Visual Output
144
+ submit_button_visual.click(
145
+ fn=process_output_visual,
146
+ inputs=[student_input, model_selector],
147
+ outputs=[output1, output2, output3]
148
+ )
149
 
150
  if __name__ == "__main__":
151
+ demo.launch(server_name="0.0.0.0", server_port=7860)