File size: 9,595 Bytes
d2c597b
9f5c19b
c0d2d56
d2c597b
 
221a5f6
 
 
 
 
 
d2c597b
221a5f6
 
 
d2c597b
221a5f6
 
 
 
 
 
 
 
 
 
 
d2c597b
 
 
 
 
 
221a5f6
 
 
c0d2d56
9f5c19b
 
 
 
 
 
 
 
 
c0d2d56
9f5c19b
221a5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c597b
 
 
 
221a5f6
 
d2c597b
 
 
 
 
52a55fa
d2c597b
9f5c19b
221a5f6
 
 
d2c597b
 
 
 
 
221a5f6
 
 
 
 
 
d2c597b
c0d2d56
221a5f6
d2c597b
221a5f6
 
 
c0d2d56
d2c597b
 
 
 
 
 
 
 
 
 
 
 
9f5c19b
d2c597b
 
221a5f6
d2c597b
221a5f6
d2c597b
 
 
 
 
 
 
 
 
 
221a5f6
d2c597b
 
 
 
9f5c19b
d2c597b
 
 
 
 
 
 
 
 
 
 
 
c0d2d56
221a5f6
d2c597b
 
221a5f6
 
 
d2c597b
221a5f6
d2c597b
 
 
 
 
221a5f6
d2c597b
 
 
 
221a5f6
d2c597b
 
 
221a5f6
d2c597b
 
 
 
 
 
 
221a5f6
 
d2c597b
 
 
 
 
 
 
 
221a5f6
d2c597b
 
 
 
 
221a5f6
 
d2c597b
 
221a5f6
 
 
d2c597b
221a5f6
 
d2c597b
221a5f6
d2c597b
221a5f6
d2c597b
221a5f6
 
d2c597b
221a5f6
d2c597b
221a5f6
 
 
d2c597b
221a5f6
d2c597b
221a5f6
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d2d56
 
221a5f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from groq import Groq
import os
import threading
import tempfile
import logging
from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, ColorClip

# Set up logging for debugging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Disable proxies to avoid 'proxies' argument error
os.environ["HTTP_PROXY"] = ""
os.environ["HTTPS_PROXY"] = ""

# Initialize Groq client with error handling
try:
    client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
    logger.info("Groq client initialized successfully with API key: %s", "set" if os.environ.get("GROQ_API_KEY") else "not set")
except Exception as e:
    logger.error("Failed to initialize Groq client: %s", str(e))
    raise

# Load Text-to-Image Models (placeholders; adjust based on actual availability)
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", fallback=None)
model2 = gr.load("models/Purz/face-projection", fallback=None)

# Stop event for threading (image generation)
stop_event = threading.Event()

# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input):
    if not subject or not difficulty or not student_input:
        return '{"lesson": "Please provide all inputs.", "question": "", "feedback": ""}'
    
    prompt = f"""
    You are an expert tutor in {subject} at the {difficulty} level. 
    The student has provided the following input: "{student_input}"
    
    Please generate:
    1. A brief, engaging lesson on the topic (2-3 paragraphs)
    2. A thought-provoking question to check understanding
    3. Constructive feedback on the student's input
    
    Format your response as a JSON object with keys: "lesson", "question", "feedback"
    """
    
    try:
        completion = client.chat.completions.create(
            messages=[{
                "role": "system",
                "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
            }, {
                "role": "user",
                "content": prompt,
            }],
            model="mixtral-8x7b-32768",
            max_tokens=1000,
        )
        return completion.choices[0].message.content
    except Exception as e:
        logger.error("Error in generate_tutor_output: %s", str(e))
        return '{"lesson": "Error generating lesson.", "question": "", "feedback": ""}'

# Function to generate images based on model selection
def generate_images(text, selected_model):
    stop_event.clear()
    if not text:
        return ["No text provided."] * 3

    if selected_model == "Model 1 (Turbo Realism)":
        model = model1
    elif selected_model == "Model 2 (Face Projection)":
        model = model2
    else:
        return ["Invalid model selection."] * 3

    if model is None:
        return ["Model not loaded."] * 3

    results = []
    for i in range(3):
        if stop_event.is_set():
            return ["Image generation stopped by user."] * 3
        modified_text = f"{text} variation {i+1}"
        try:
            result = model(modified_text)
            results.append(result)
        except Exception as e:
            logger.error("Error generating image %d: %s", i+1, str(e))
            results.append(None)
    return results

# Function to generate text-to-video with voice
def generate_text_to_video(text):
    if not text:
        return "No text provided for video generation."

    try:
        # Generate narration using Groq (text-to-speech simulation)
        narration_prompt = f"Convert this text to a natural-sounding narration: {text}"
        narration_response = client.chat.completions.create(
            messages=[{
                "role": "system",
                "content": "You are an AI voice generator that produces natural, human-like speech."
            }, {
                "role": "user",
                "content": narration_prompt,
            }],
            model="mixtral-8x7b-32768",
            max_tokens=500,
        )
        narration_text = narration_response.choices[0].message.content

        # Simulate TTS with a silent audio clip (replace with real TTS API if available)
        with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
            audio_duration = len(narration_text.split()) / 2  # Rough estimate: 2 words/sec
            audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None)
            audio.write_audiofile(temp_audio.name, fps=44100, logger=None)

        # Create video clips from text
        clips = []
        words = narration_text.split()
        chunk_size = 10  # Display 10 words at a time
        for i in range(0, len(words), chunk_size):
            chunk = " ".join(words[i:i + chunk_size])
            clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black')
            clip = clip.set_duration(audio_duration / (len(words) / chunk_size))
            clips.append(clip)

        # Concatenate clips into a single video
        final_video = concatenate_videoclips(clips)
        
        # Add audio to video
        audio_clip = AudioFileClip(temp_audio.name)
        final_video = final_video.set_audio(audio_clip)

        # Save video to temporary file
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
            final_video.write_videofile(temp_video.name, fps=24, logger=None)
            video_path = temp_video.name

        # Clean up temporary audio file
        os.unlink(temp_audio.name)
        return video_path
    except Exception as e:
        logger.error("Error generating video: %s", str(e))
        return f"Error generating video: {str(e)}"

# Gradio interface setup
with gr.Blocks(title="AI Tutor with Visuals") as demo:
    gr.Markdown("# 🎓 Your AI Tutor with Visuals & Videos")

    # Text-based output section
    with gr.Row():
        with gr.Column(scale=2):
            subject = gr.Dropdown(
                ["Math", "Science", "History", "Literature", "Code", "AI"], 
                label="Subject", 
                value="Math"
            )
            difficulty = gr.Radio(
                ["Beginner", "Intermediate", "Advanced"], 
                label="Difficulty Level", 
                value="Beginner"
            )
            student_input = gr.Textbox(
                placeholder="Type your query here...", 
                label="Your Input"
            )
            submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
        
        with gr.Column(scale=3):
            lesson_output = gr.Markdown(label="Lesson")
            question_output = gr.Markdown(label="Comprehension Question")
            feedback_output = gr.Markdown(label="Feedback")

    # Visual output section
    with gr.Row():
        with gr.Column(scale=2):
            model_selector = gr.Radio(
                ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
                label="Select Image Generation Model",
                value="Model 1 (Turbo Realism)"
            )
            submit_button_visual = gr.Button("Generate Visuals", variant="primary")
            submit_button_video = gr.Button("Generate Video with Voice", variant="primary")
        
        with gr.Column(scale=3):
            output1 = gr.Image(label="Generated Image 1")
            output2 = gr.Image(label="Generated Image 2")
            output3 = gr.Image(label="Generated Image 3")
            video_output = gr.Video(label="Generated Video with Voice")

    gr.Markdown("""
    ### How to Use
    1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'.
    2. **Visual Section**: Choose an image model and click 'Generate Visuals' for 3 images, or 'Generate Video with Voice' for a narrated video.
    3. Enjoy your personalized learning experience!
    """)

    # Processing functions
    def process_output_text(subject, difficulty, student_input):
        tutor_output = generate_tutor_output(subject, difficulty, student_input)
        try:
            parsed = eval(tutor_output)  # Safely parse JSON (consider json.loads in production)
            return parsed["lesson"], parsed["question"], parsed["feedback"]
        except Exception as e:
            logger.error("Error parsing tutor output: %s", str(e))
            return "Error parsing output", "No question available", "No feedback available"

    def process_output_visual(text, selected_model):
        images = generate_images(text, selected_model)
        return images[0], images[1], images[2]

    def process_output_video(text):
        return generate_text_to_video(text)

    # Button click handlers
    submit_button_text.click(
        fn=process_output_text,
        inputs=[subject, difficulty, student_input],
        outputs=[lesson_output, question_output, feedback_output]
    )
    submit_button_visual.click(
        fn=process_output_visual,
        inputs=[student_input, model_selector],
        outputs=[output1, output2, output3]
    )
    submit_button_video.click(
        fn=process_output_video,
        inputs=[student_input],
        outputs=[video_output]
    )

if __name__ == "__main__":
    # Launch Gradio app
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)