File size: 8,817 Bytes
d2c597b
9f5c19b
c0d2d56
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d2d56
9f5c19b
 
 
 
 
 
 
 
 
c0d2d56
9f5c19b
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52a55fa
d2c597b
9f5c19b
d2c597b
 
 
 
 
 
 
 
 
 
c0d2d56
d2c597b
 
c0d2d56
d2c597b
 
 
 
 
 
 
 
 
 
 
 
9f5c19b
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5c19b
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
c0d2d56
d2c597b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d2d56
 
d2c597b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from groq import Groq
import os
import threading
from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, ColorClip
import tempfile

# Initialize Groq client with your API key
client = Groq(api_key=os.environ["GROQ_API_KEY"])

# Load Text-to-Image Models
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
model2 = gr.load("models/Purz/face-projection")

# Stop event for threading (image generation)
stop_event = threading.Event()

# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input):
    prompt = f"""
    You are an expert tutor in {subject} at the {difficulty} level. 
    The student has provided the following input: "{student_input}"
    
    Please generate:
    1. A brief, engaging lesson on the topic (2-3 paragraphs)
    2. A thought-provoking question to check understanding
    3. Constructive feedback on the student's input
    
    Format your response as a JSON object with keys: "lesson", "question", "feedback"
    """
    
    completion = client.chat.completions.create(
        messages=[{
            "role": "system",
            "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
        }, {
            "role": "user",
            "content": prompt,
        }],
        model="mixtral-8x7b-32768",
        max_tokens=1000,
    )
    
    return completion.choices[0].message.content

# Function to generate images based on model selection
def generate_images(text, selected_model):
    stop_event.clear()

    if selected_model == "Model 1 (Turbo Realism)":
        model = model1
    elif selected_model == "Model 2 (Face Projection)":
        model = model2
    else:
        return ["Invalid model selection."] * 3

    results = []
    for i in range(3):
        if stop_event.is_set():
            return ["Image generation stopped by user."] * 3

        modified_text = f"{text} variation {i+1}"
        result = model(modified_text)
        results.append(result)

    return results

# New function to generate text-to-video with voice
def generate_text_to_video(text):
    try:
        # Generate narration using Groq (text-to-speech simulation)
        narration_prompt = f"Convert this text to a natural-sounding narration: {text}"
        narration_response = client.chat.completions.create(
            messages=[{
                "role": "system",
                "content": "You are an AI voice generator that produces natural, human-like speech."
            }, {
                "role": "user",
                "content": narration_prompt,
            }],
            model="mixtral-8x7b-32768",
            max_tokens=500,
        )
        narration_text = narration_response.choices[0].message.content

        # Simulate TTS by saving text as audio (placeholder; in reality, use a TTS API)
        with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
            # Here, you'd use a real TTS service (e.g., Google TTS, ElevenLabs)
            # For now, we'll simulate with a silent audio clip
            audio_duration = len(narration_text.split()) / 2  # Rough estimate: 2 words per second
            audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None)
            audio.write_audiofile(temp_audio.name, fps=44100, logger=None)

        # Create video clips from text
        clips = []
        words = narration_text.split()
        chunk_size = 10  # Display 10 words at a time
        for i in range(0, len(words), chunk_size):
            chunk = " ".join(words[i:i + chunk_size])
            clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black')
            clip = clip.set_duration(audio_duration / (len(words) / chunk_size))  # Evenly split duration
            clips.append(clip)

        # Concatenate clips into a single video
        final_video = concatenate_videoclips(clips)
        
        # Add audio to video
        audio_clip = AudioFileClip(temp_audio.name)
        final_video = final_video.set_audio(audio_clip)

        # Save video to temporary file
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
            final_video.write_videofile(temp_video.name, fps=24, logger=None)
            video_path = temp_video.name

        # Clean up temporary audio file
        os.unlink(temp_audio.name)

        return video_path
    except Exception as e:
        return f"Error generating video: {str(e)}"

# Set up the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")

    # Section for generating Text-based output (lesson, question, feedback)
    with gr.Row():
        with gr.Column(scale=2):
            subject = gr.Dropdown(
                ["Math", "Science", "History", "Literature", "Code", "AI"], 
                label="Subject", 
                info="Choose the subject of your lesson"
            )
            difficulty = gr.Radio(
                ["Beginner", "Intermediate", "Advanced"], 
                label="Difficulty Level", 
                info="Select your proficiency level"
            )
            student_input = gr.Textbox(
                placeholder="Type your query here...", 
                label="Your Input", 
                info="Enter the topic you want to learn"
            )
            submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
        
        with gr.Column(scale=3):
            lesson_output = gr.Markdown(label="Lesson")
            question_output = gr.Markdown(label="Comprehension Question")
            feedback_output = gr.Markdown(label="Feedback")
    
    # Section for generating Visual output
    with gr.Row():
        with gr.Column(scale=2):
            model_selector = gr.Radio(
                ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
                label="Select Image Generation Model",
                value="Model 1 (Turbo Realism)"
            )
            submit_button_visual = gr.Button("Generate Visuals", variant="primary")
            submit_button_video = gr.Button("Generate Video with Voice", variant="primary")  # New button
        
        with gr.Column(scale=3):
            output1 = gr.Image(label="Generated Image 1")
            output2 = gr.Image(label="Generated Image 2")
            output3 = gr.Image(label="Generated Image 3")
            video_output = gr.Video(label="Generated Video with Voice")  # New video output
    
    gr.Markdown("""
    ### How to Use
    1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
    2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic. Click 'Generate Video with Voice' to create a video with narration.
    3. Review the AI-generated content to enhance your learning experience!
    """)
    
    def process_output_text(subject, difficulty, student_input):
        try:
            tutor_output = generate_tutor_output(subject, difficulty, student_input)
            parsed = eval(tutor_output)
            return parsed["lesson"], parsed["question"], parsed["feedback"]
        except:
            return "Error parsing output", "No question available", "No feedback available"
    
    def process_output_visual(text, selected_model):
        try:
            images = generate_images(text, selected_model)
            return images[0], images[1], images[2]
        except:
            return None, None, None
    
    def process_output_video(text):
        try:
            video_path = generate_text_to_video(text)
            return video_path
        except:
            return None

    # Generate Text-based Output
    submit_button_text.click(
        fn=process_output_text,
        inputs=[subject, difficulty, student_input],
        outputs=[lesson_output, question_output, feedback_output]
    )
    
    # Generate Visual Output
    submit_button_visual.click(
        fn=process_output_visual,
        inputs=[student_input, model_selector],
        outputs=[output1, output2, output3]
    )
    
    # Generate Video Output
    submit_button_video.click(
        fn=process_output_video,
        inputs=[student_input],
        outputs=[video_output]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)