Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, Colo
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
-
# Disable proxies to avoid 'proxies'
|
14 |
os.environ["HTTP_PROXY"] = ""
|
15 |
os.environ["HTTPS_PROXY"] = ""
|
16 |
|
@@ -22,9 +22,20 @@ except Exception as e:
|
|
22 |
logger.error("Failed to initialize Groq client: %s", str(e))
|
23 |
raise
|
24 |
|
25 |
-
# Load Text-to-Image Models
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Stop event for threading (image generation)
|
30 |
stop_event = threading.Event()
|
@@ -77,7 +88,7 @@ def generate_images(text, selected_model):
|
|
77 |
return ["Invalid model selection."] * 3
|
78 |
|
79 |
if model is None:
|
80 |
-
return ["
|
81 |
|
82 |
results = []
|
83 |
for i in range(3):
|
@@ -98,7 +109,6 @@ def generate_text_to_video(text):
|
|
98 |
return "No text provided for video generation."
|
99 |
|
100 |
try:
|
101 |
-
# Generate narration using Groq (text-to-speech simulation)
|
102 |
narration_prompt = f"Convert this text to a natural-sounding narration: {text}"
|
103 |
narration_response = client.chat.completions.create(
|
104 |
messages=[{
|
@@ -113,35 +123,28 @@ def generate_text_to_video(text):
|
|
113 |
)
|
114 |
narration_text = narration_response.choices[0].message.content
|
115 |
|
116 |
-
# Simulate TTS with a silent audio clip (replace with real TTS API if available)
|
117 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
118 |
audio_duration = len(narration_text.split()) / 2 # Rough estimate: 2 words/sec
|
119 |
audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None)
|
120 |
audio.write_audiofile(temp_audio.name, fps=44100, logger=None)
|
121 |
|
122 |
-
# Create video clips from text
|
123 |
clips = []
|
124 |
words = narration_text.split()
|
125 |
-
chunk_size = 10
|
126 |
for i in range(0, len(words), chunk_size):
|
127 |
chunk = " ".join(words[i:i + chunk_size])
|
128 |
clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black')
|
129 |
clip = clip.set_duration(audio_duration / (len(words) / chunk_size))
|
130 |
clips.append(clip)
|
131 |
|
132 |
-
# Concatenate clips into a single video
|
133 |
final_video = concatenate_videoclips(clips)
|
134 |
-
|
135 |
-
# Add audio to video
|
136 |
audio_clip = AudioFileClip(temp_audio.name)
|
137 |
final_video = final_video.set_audio(audio_clip)
|
138 |
|
139 |
-
# Save video to temporary file
|
140 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
|
141 |
final_video.write_videofile(temp_video.name, fps=24, logger=None)
|
142 |
video_path = temp_video.name
|
143 |
|
144 |
-
# Clean up temporary audio file
|
145 |
os.unlink(temp_audio.name)
|
146 |
return video_path
|
147 |
except Exception as e:
|
@@ -152,7 +155,6 @@ def generate_text_to_video(text):
|
|
152 |
with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
153 |
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
154 |
|
155 |
-
# Section for generating Text-based output
|
156 |
with gr.Row():
|
157 |
with gr.Column(scale=2):
|
158 |
subject = gr.Dropdown(
|
@@ -179,7 +181,6 @@ with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
179 |
question_output = gr.Markdown(label="Comprehension Question")
|
180 |
feedback_output = gr.Markdown(label="Feedback")
|
181 |
|
182 |
-
# Section for generating Visual output
|
183 |
with gr.Row():
|
184 |
with gr.Column(scale=2):
|
185 |
model_selector = gr.Radio(
|
@@ -198,16 +199,15 @@ with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
198 |
|
199 |
gr.Markdown("""
|
200 |
### How to Use
|
201 |
-
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'
|
202 |
-
2. **Visual Section**: Select the model
|
203 |
3. Review the AI-generated content to enhance your learning experience!
|
204 |
""")
|
205 |
|
206 |
-
# Processing functions
|
207 |
def process_output_text(subject, difficulty, student_input):
|
208 |
try:
|
209 |
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
210 |
-
parsed = eval(tutor_output) # Use json.loads in production
|
211 |
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
212 |
except Exception as e:
|
213 |
logger.error("Error parsing tutor output: %s", str(e))
|
@@ -229,7 +229,6 @@ with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
229 |
logger.error("Error in process_output_video: %s", str(e))
|
230 |
return None
|
231 |
|
232 |
-
# Button click handlers
|
233 |
submit_button_text.click(
|
234 |
fn=process_output_text,
|
235 |
inputs=[subject, difficulty, student_input],
|
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
# Disable proxies to avoid previous 'proxies' error
|
14 |
os.environ["HTTP_PROXY"] = ""
|
15 |
os.environ["HTTPS_PROXY"] = ""
|
16 |
|
|
|
22 |
logger.error("Failed to initialize Groq client: %s", str(e))
|
23 |
raise
|
24 |
|
25 |
+
# Load Text-to-Image Models with error handling
|
26 |
+
try:
|
27 |
+
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", fallback=None)
|
28 |
+
logger.info("Model 1 loaded successfully: SD3.5-Turbo-Realism-2.0-LoRA")
|
29 |
+
except Exception as e:
|
30 |
+
logger.error("Failed to load Model 1: %s", str(e))
|
31 |
+
model1 = None # Fallback to None if loading fails
|
32 |
+
|
33 |
+
try:
|
34 |
+
model2 = gr.load("models/Purz/face-projection", fallback=None)
|
35 |
+
logger.info("Model 2 loaded successfully: face-projection")
|
36 |
+
except Exception as e:
|
37 |
+
logger.error("Failed to load Model 2: %s", str(e))
|
38 |
+
model2 = None # Fallback to None if loading fails
|
39 |
|
40 |
# Stop event for threading (image generation)
|
41 |
stop_event = threading.Event()
|
|
|
88 |
return ["Invalid model selection."] * 3
|
89 |
|
90 |
if model is None:
|
91 |
+
return ["Selected model is not available."] * 3
|
92 |
|
93 |
results = []
|
94 |
for i in range(3):
|
|
|
109 |
return "No text provided for video generation."
|
110 |
|
111 |
try:
|
|
|
112 |
narration_prompt = f"Convert this text to a natural-sounding narration: {text}"
|
113 |
narration_response = client.chat.completions.create(
|
114 |
messages=[{
|
|
|
123 |
)
|
124 |
narration_text = narration_response.choices[0].message.content
|
125 |
|
|
|
126 |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
127 |
audio_duration = len(narration_text.split()) / 2 # Rough estimate: 2 words/sec
|
128 |
audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None)
|
129 |
audio.write_audiofile(temp_audio.name, fps=44100, logger=None)
|
130 |
|
|
|
131 |
clips = []
|
132 |
words = narration_text.split()
|
133 |
+
chunk_size = 10
|
134 |
for i in range(0, len(words), chunk_size):
|
135 |
chunk = " ".join(words[i:i + chunk_size])
|
136 |
clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black')
|
137 |
clip = clip.set_duration(audio_duration / (len(words) / chunk_size))
|
138 |
clips.append(clip)
|
139 |
|
|
|
140 |
final_video = concatenate_videoclips(clips)
|
|
|
|
|
141 |
audio_clip = AudioFileClip(temp_audio.name)
|
142 |
final_video = final_video.set_audio(audio_clip)
|
143 |
|
|
|
144 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video:
|
145 |
final_video.write_videofile(temp_video.name, fps=24, logger=None)
|
146 |
video_path = temp_video.name
|
147 |
|
|
|
148 |
os.unlink(temp_audio.name)
|
149 |
return video_path
|
150 |
except Exception as e:
|
|
|
155 |
with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
156 |
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
157 |
|
|
|
158 |
with gr.Row():
|
159 |
with gr.Column(scale=2):
|
160 |
subject = gr.Dropdown(
|
|
|
181 |
question_output = gr.Markdown(label="Comprehension Question")
|
182 |
feedback_output = gr.Markdown(label="Feedback")
|
183 |
|
|
|
184 |
with gr.Row():
|
185 |
with gr.Column(scale=2):
|
186 |
model_selector = gr.Radio(
|
|
|
199 |
|
200 |
gr.Markdown("""
|
201 |
### How to Use
|
202 |
+
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'.
|
203 |
+
2. **Visual Section**: Select the model, then click 'Generate Visuals' for 3 images or 'Generate Video with Voice' for a narrated video.
|
204 |
3. Review the AI-generated content to enhance your learning experience!
|
205 |
""")
|
206 |
|
|
|
207 |
def process_output_text(subject, difficulty, student_input):
|
208 |
try:
|
209 |
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
210 |
+
parsed = eval(tutor_output) # Use json.loads in production
|
211 |
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
212 |
except Exception as e:
|
213 |
logger.error("Error parsing tutor output: %s", str(e))
|
|
|
229 |
logger.error("Error in process_output_video: %s", str(e))
|
230 |
return None
|
231 |
|
|
|
232 |
submit_button_text.click(
|
233 |
fn=process_output_text,
|
234 |
inputs=[subject, difficulty, student_input],
|