File size: 5,954 Bytes
bdbe8e1
 
 
 
 
 
 
 
 
8573458
 
bdbe8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8573458
bdbe8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8573458
bdbe8e1
 
 
 
 
 
 
 
 
8573458
bdbe8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8573458
bdbe8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8573458
bdbe8e1
8573458
 
 
 
 
bdbe8e1
 
8573458
bdbe8e1
8573458
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import random
import re
from datetime import datetime
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

def scrape_amazon(search_term, pincode, num_pages=5):
    options = Options()
    options.add_argument('--headless')
    options.add_argument('--disable-blink-features=AutomationControlled')
    options.add_argument('--disable-gpu')
    options.add_argument('--no-sandbox')

    driver = webdriver.Chrome(service=Service(), options=options)

    all_products = []
    seen_titles = set()

    for page in range(1, num_pages + 1):
        url = f"https://www.amazon.in/s?k={search_term}&page={page}"
        driver.get(url)

        time.sleep(random.uniform(3, 5))

        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(random.uniform(2, 4))

        products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
        print(f"Scraping page {page}, found {len(products)} products...")

        for product in products:
            try:
                title_elem = product.find_element(By.XPATH, ".//h2//span")
                title = title_elem.text.strip()
            except:
                title = "No Title"

            if title in seen_titles:
                continue
            seen_titles.add(title)

            try:
                link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
                link = link_elem.get_attribute('href')
                if link and link.startswith("/"):
                    link = "https://www.amazon.in" + link
            except:
                link = "No Link"

            try:
                price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
                selling_price = (price_elem.text).replace(',', '').strip()
            except:
                try:
                    price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
                    selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
                except:
                    selling_price = "No Price"

            try:
                mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price']//span[@class='a-offscreen']")
                mrp = mrp_elem.get_attribute("textContent").replace('₹', '').replace(',', '').strip()
            except:
                mrp = "No Price"

            try:
                if selling_price != "No Price" and mrp != "No Price":
                    discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
                else:
                    discount_percent = 0.0
            except:
                discount_percent = 0.0

            try:
                grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
                grammage = grammage_match.group(0) if grammage_match else "No Grammage"
            except:
                grammage = "No Grammage"

            try:
                badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
                deal_tag = badge.text.strip()
            except:
                deal_tag = "No Deal"

            try:
                qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
            except:
                qty = "No data"

            try:
                rating_elem = product.find_element(By.XPATH, ".//span[@class='a-icon-alt']")
                rating = rating_elem.get_attribute("textContent").split()[0]
            except:
                rating = "No Rating"

            try:
                reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
            except:
                reviews = "No Reviews"

            try:
                ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'a-color-secondary') and contains(text(), 'Sponsored')]")
                ad_status = "Ad"
            except:
                ad_status = "Not Ad"

            product_data = {
                'Title': title,
                'Grammage': grammage,
                'Selling Price': selling_price,
                'MRP': mrp,
                'Discount %': discount_percent,
                'Deal Tags': deal_tag,
                'Quantity Bought': qty,
                'Rating': rating,
                'Reviews': reviews,
                'Link': link,
                'Ad/Not Ad': ad_status,
                'Date': datetime.now().strftime("%d-%m-%Y"),
                'Search Term': search_term,
                'Pincode': pincode,
                'Category': search_term,
            }

            all_products.append(product_data)

        time.sleep(random.uniform(2, 4))

    driver.quit()

    df = pd.DataFrame(all_products)

    today_date = datetime.now().strftime("%Y-%m-%d")
    filename_base = f"{search_term}_scrape_{today_date}.xlsx"
    df.to_excel(filename_base, index=False)

    print(f"\nSaved: {filename_base}")
    return filename_base


#  Interface function for Gradio
def scrape_amazon_interface(search_term, pincode, num_pages):
    return scrape_amazon(search_term, pincode, num_pages)