Amazon_web_scraper / Scrapper.py
Sameercodes's picture
Update Scrapper.py
bdbe8e1 verified
raw
history blame
5.95 kB
import time
import random
import re
from datetime import datetime
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
def scrape_amazon(search_term, pincode, num_pages=5):
options = Options()
options.add_argument('--headless')
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
options.add_argument('--window-size=1920,1080')
driver = webdriver.Chrome(service=Service(), options=options)
all_products = []
seen_titles = set()
for page in range(1, num_pages + 1):
url = f"https://www.amazon.in/s?k={search_term}&page={page}"
driver.get(url)
time.sleep(random.uniform(3, 5))
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(random.uniform(2, 4))
products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
print(f"Scraping page {page}, found {len(products)} products...")
for product in products:
try:
title_elem = product.find_element(By.XPATH, ".//h2//span")
title = title_elem.text.strip()
except:
title = "No Title"
if title in seen_titles:
continue
seen_titles.add(title)
try:
link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
link = link_elem.get_attribute('href')
if link and link.startswith("/"):
link = "https://www.amazon.in" + link
except:
link = "No Link"
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
selling_price = price_elem.text.replace(',', '').strip()
except:
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
except:
selling_price = "No Price"
try:
mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price']//span[@class='a-offscreen']")
raw_price = mrp_elem.get_attribute("textContent")
mrp = raw_price.replace('₹', '').replace(',', '').strip()
except:
mrp = "No Price"
try:
if selling_price != "No Price" and mrp != "No Price":
discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
else:
discount_percent = 0.0
except:
discount_percent = 0.0
try:
grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
grammage = grammage_match.group(0) if grammage_match else "No Grammage"
except:
grammage = "No Grammage"
try:
badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
deal_tag = badge.text.strip()
except:
deal_tag = "No Deal"
try:
qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
except:
qty = "No data"
try:
rating_elem = product.find_element(By.XPATH, ".//span[@class='a-icon-alt']")
rating = rating_elem.get_attribute("textContent").split()[0]
except:
rating = "No Rating"
try:
reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
except:
reviews = "No Reviews"
try:
product.find_element(By.XPATH, ".//span[contains(@class, 'a-color-secondary') and contains(text(), 'Sponsored')]")
ad_status = "Ad"
except:
ad_status = "Not Ad"
product_data = {
'Title': title,
'Grammage': grammage,
'Selling Price': selling_price,
'MRP': mrp,
'Discount %': discount_percent,
'Deal Tags': deal_tag,
'Quantity Bought': qty,
'Rating': rating,
'Reviews': reviews,
'Link': link,
'Ad/Not Ad': ad_status,
'Date': datetime.now().strftime("%d-%m-%Y"),
'Search Term': search_term,
'Pincode': pincode,
'Category': search_term,
}
all_products.append(product_data)
time.sleep(random.uniform(2, 4))
driver.quit()
df = pd.DataFrame(all_products)
today_date = datetime.now().strftime("%Y-%m-%d")
filename_base = f"{search_term}_scrape_{today_date}"
excel_path = f"{filename_base}.xlsx"
df.to_excel(excel_path, index=False)
return excel_path
def scrape_amazon_interface(search_term, pincode, num_pages):
excel_path = scrape_amazon(search_term, pincode, num_pages)
return excel_path