BF-WAB / app_backup_20250903_1710.py
SamiKoen's picture
Push advanced version with all features
33514db
import os
import json
import requests
import xml.etree.ElementTree as ET
import warnings
import time
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from fastapi import FastAPI, Request
from twilio.rest import Client
from twilio.twiml.messaging_response import MessagingResponse
# Yeni modüller - Basit sistem
from prompts import get_prompt_content_only
from whatsapp_renderer import extract_product_info_whatsapp
from whatsapp_passive_profiler import (
analyze_user_message, get_user_profile_summary, get_personalized_recommendations
)
# LOGGING EN BAŞA EKLENDİ
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Import improved WhatsApp search for BF space
# DISABLED - Using GPT-5 smart warehouse search instead
USE_IMPROVED_SEARCH = False
# try:
# from whatsapp_improved_chatbot import WhatsAppImprovedChatbot
# USE_IMPROVED_SEARCH = True
# except ImportError:
# print("Improved WhatsApp chatbot not available, using basic search")
# USE_IMPROVED_SEARCH = False
# Import GPT-5 powered smart warehouse search - complete BF algorithm
try:
from smart_warehouse_with_price import get_warehouse_stock_smart_with_price
USE_GPT5_SEARCH = True
logger.info("✅ GPT-5 complete smart warehouse with price (BF algorithm) loaded")
except ImportError:
USE_GPT5_SEARCH = False
logger.info("❌ GPT-5 search not available")
warnings.simplefilter('ignore')
# Import Media Queue V2
try:
from media_queue_v2 import media_queue
USE_MEDIA_QUEUE = True
logger.info("✅ Media Queue V2 loaded successfully")
except ImportError:
USE_MEDIA_QUEUE = False
logger.info("❌ Media Queue V2 not available")
# Import Store Notification System
try:
from store_notification import (
notify_product_reservation,
notify_price_inquiry,
notify_stock_inquiry,
send_test_notification,
send_store_notification,
should_notify_mehmet_bey
)
USE_STORE_NOTIFICATION = True
logger.info("✅ Store Notification System loaded")
except ImportError:
USE_STORE_NOTIFICATION = False
logger.info("❌ Store Notification System not available")
# Import Intent Analyzer
try:
from intent_analyzer import (
analyze_customer_intent,
should_notify_store,
get_smart_notification_message
)
USE_INTENT_ANALYZER = True
logger.info("✅ GPT-5 Intent Analyzer loaded")
except ImportError:
USE_INTENT_ANALYZER = False
logger.info("❌ Intent Analyzer not available")
# API ayarları
API_URL = "https://api.openai.com/v1/chat/completions"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
logger.info(f"OpenAI API Key var mı: {'Evet' if OPENAI_API_KEY else 'Hayır'}")
# Twilio WhatsApp ayarları
TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID")
TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN")
TWILIO_MESSAGING_SERVICE_SID = os.getenv("TWILIO_MESSAGING_SERVICE_SID")
TWILIO_WHATSAPP_NUMBER = "whatsapp:+905332047254"
logger.info(f"Twilio SID var mı: {'Evet' if TWILIO_ACCOUNT_SID else 'Hayır'}")
logger.info(f"Twilio Auth Token var mı: {'Evet' if TWILIO_AUTH_TOKEN else 'Hayır'}")
logger.info(f"Messaging Service SID var mı: {'Evet' if TWILIO_MESSAGING_SERVICE_SID else 'Hayır'}")
if not TWILIO_ACCOUNT_SID or not TWILIO_AUTH_TOKEN:
logger.error("❌ Twilio bilgileri eksik!")
twilio_client = None
else:
try:
twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
logger.info("✅ Twilio client başarıyla oluşturuldu!")
except Exception as e:
logger.error(f"❌ Twilio client hatası: {e}")
twilio_client = None
# Mağaza stok bilgilerini çekme fonksiyonu
def get_warehouse_stock(product_name):
"""B2B API'den mağaza stok bilgilerini çek - GPT-5 enhanced"""
# Try GPT-5 complete smart search (BF algorithm)
if USE_GPT5_SEARCH:
try:
gpt5_result = get_warehouse_stock_smart_with_price(product_name)
if gpt5_result and isinstance(gpt5_result, list):
# Return directly if it's already formatted strings
if all(isinstance(item, str) for item in gpt5_result):
return gpt5_result
# Format for WhatsApp if dict format
warehouse_info = []
for item in gpt5_result:
if isinstance(item, dict):
info = f"📦 {item.get('name', '')}"
if item.get('variant'):
info += f" ({item['variant']})"
if item.get('warehouses'):
info += f"\n📍 Mevcut: {', '.join(item['warehouses'])}"
if item.get('price'):
info += f"\n💰 {item['price']}"
warehouse_info.append(info)
else:
warehouse_info.append(str(item))
return warehouse_info if warehouse_info else None
except Exception as e:
logger.error(f"GPT-5 warehouse search error: {e}")
# Continue to fallback search
# Fallback to original search
try:
import re
warehouse_url = 'https://video.trek-turkey.com/bizimhesap-warehouse-xml-b2b-api-v2.php'
response = requests.get(warehouse_url, verify=False, timeout=15)
if response.status_code != 200:
return None
root = ET.fromstring(response.content)
# Turkish character normalization function
turkish_map = {'ı': 'i', 'ğ': 'g', 'ü': 'u', 'ş': 's', 'ö': 'o', 'ç': 'c', 'İ': 'i', 'I': 'i'}
def normalize_turkish(text):
import unicodedata
text = unicodedata.normalize('NFD', text)
text = ''.join(char for char in text if unicodedata.category(char) != 'Mn')
for tr_char, en_char in turkish_map.items():
text = text.replace(tr_char, en_char)
return text
# Normalize search product name
search_name = normalize_turkish(product_name.lower().strip())
search_name = search_name.replace('(2026)', '').replace('(2025)', '').replace(' gen 3', '').replace(' gen', '').strip()
search_words = search_name.split()
best_matches = []
exact_matches = []
variant_matches = []
candidates = []
# Separate size/color words from product words
size_color_words = ['s', 'm', 'l', 'xl', 'xs', 'small', 'medium', 'large',
'turuncu', 'siyah', 'beyaz', 'mavi', 'kirmizi', 'yesil',
'orange', 'black', 'white', 'blue', 'red', 'green']
variant_words = [word for word in search_words if word in size_color_words]
product_words = [word for word in search_words if word not in size_color_words]
# Check if this is a size/color specific query
is_size_color_query = len(variant_words) > 0 and len(search_words) <= 4
# İlk geçiş: Variant alanında beden/renk araması
if is_size_color_query:
for product in root.findall('Product'):
product_name_elem = product.find('ProductName')
variant_elem = product.find('ProductVariant')
if product_name_elem is not None and product_name_elem.text:
xml_product_name = product_name_elem.text.strip()
normalized_product_name = normalize_turkish(xml_product_name.lower())
# If there are product words, check if they match the product name
product_name_matches = True
if product_words:
product_name_matches = all(word in normalized_product_name for word in product_words)
# Only proceed if product name matches (or no product context)
if product_name_matches:
# Variant field check
if variant_elem is not None and variant_elem.text:
variant_text = normalize_turkish(variant_elem.text.lower().replace('-', ' '))
# Check if all variant words are in variant field
if all(word in variant_text for word in variant_words):
variant_matches.append((product, xml_product_name, variant_text))
if variant_matches:
candidates = variant_matches
else:
# Fallback to normal product name search
is_size_color_query = False
# İkinci geçiş: Normal ürün adı tam eşleşmeleri (variant match yoksa)
if not is_size_color_query or not candidates:
for product in root.findall('Product'):
product_name_elem = product.find('ProductName')
if product_name_elem is not None and product_name_elem.text:
xml_product_name = product_name_elem.text.strip()
normalized_xml = normalize_turkish(xml_product_name.lower())
normalized_xml = normalized_xml.replace('(2026)', '').replace('(2025)', '').replace(' gen 3', '').replace(' gen', '').strip()
xml_words = normalized_xml.split()
# Tam eşleşme kontrolü - ilk iki kelime tam aynı olmalı
if len(search_words) >= 2 and len(xml_words) >= 2:
search_key = f"{search_words[0]} {search_words[1]}"
xml_key = f"{xml_words[0]} {xml_words[1]}"
if search_key == xml_key:
exact_matches.append((product, xml_product_name, normalized_xml))
# Eğer variant match varsa onu kullan, yoksa exact matches kullan
if not candidates:
candidates = exact_matches if exact_matches else []
# Eğer hala bir match yoksa, fuzzy matching yap
if not candidates:
for product in root.findall('Product'):
product_name_elem = product.find('ProductName')
if product_name_elem is not None and product_name_elem.text:
xml_product_name = product_name_elem.text.strip()
normalized_xml = normalize_turkish(xml_product_name.lower())
normalized_xml = normalized_xml.replace('(2026)', '').replace('(2025)', '').replace(' gen 3', '').replace(' gen', '').strip()
xml_words = normalized_xml.split()
# Ortak kelime sayısını hesapla
common_words = set(search_words) & set(xml_words)
# En az 2 ortak kelime olmalı VE ilk kelime aynı olmalı (marka kontrolü)
if (len(common_words) >= 2 and
len(search_words) > 0 and len(xml_words) > 0 and
search_words[0] == xml_words[0]):
best_matches.append((product, xml_product_name, normalized_xml, len(common_words)))
# En çok ortak kelimeye sahip olanları seç
if best_matches:
max_common = max(match[3] for match in best_matches)
candidates = [(match[0], match[1], match[2]) for match in best_matches if match[3] == max_common]
# Stok bilgilerini topla ve tekrarları önle
warehouse_stock_map = {} # warehouse_name -> total_stock
for product, xml_name, _ in candidates:
# New B2B API structure: Warehouse elements are direct children of Product
for warehouse in product.findall('Warehouse'):
name_elem = warehouse.find('Name')
stock_elem = warehouse.find('Stock')
if name_elem is not None and stock_elem is not None:
warehouse_name = name_elem.text if name_elem.text else "Bilinmeyen"
try:
stock_count = int(stock_elem.text) if stock_elem.text else 0
if stock_count > 0:
# Aynı mağaza için stokları topla
if warehouse_name in warehouse_stock_map:
warehouse_stock_map[warehouse_name] += stock_count
else:
warehouse_stock_map[warehouse_name] = stock_count
except (ValueError, TypeError):
pass
if warehouse_stock_map:
# Mağaza stoklarını liste halinde döndür
all_warehouse_info = []
for warehouse_name, total_stock in warehouse_stock_map.items():
all_warehouse_info.append(f"{warehouse_name}: Stokta var")
return all_warehouse_info
else:
return ["Hiçbir mağazada stokta bulunmuyor"]
except Exception as e:
print(f"Mağaza stok bilgisi çekme hatası: {e}")
return None
# Trek bisiklet ürünlerini çekme - DÜZELTİLMİŞ VERSİYON
try:
# All XML debug prints disabled to reduce noise
url = 'https://www.trekbisiklet.com.tr/output/8582384479'
response = requests.get(url, verify=False, timeout=10)
# XML parsing - all debug prints disabled
content_preview = response.content[:500].decode('utf-8', errors='ignore')
root = ET.fromstring(response.content)
all_items = root.findall('item')
# Item analysis disabled for production
# Marlin arama testi
marlin_count = 0
products = []
for item in all_items:
# Değişkenleri önceden tanımla
stock_number = 0
stock_amount = "stokta değil"
price = ""
price_eft = ""
product_link = ""
rootlabel = item.find('rootlabel')
if rootlabel is None or not rootlabel.text:
continue
full_name = rootlabel.text.strip()
name_words = full_name.lower().split()
name = name_words[0] if name_words else "unknown"
# STOK KONTROLÜ - SAYISAL KARŞILAŞTIRMA
stock_element = item.find('stockAmount')
if stock_element is not None and stock_element.text:
try:
stock_number = int(stock_element.text.strip())
stock_amount = "stokta" if stock_number > 0 else "stokta değil"
except (ValueError, TypeError):
stock_number = 0
stock_amount = "stokta değil"
# Marlin kontrolü
if 'marlin' in full_name.lower():
marlin_count += 1
pass
# Stokta olan ürünler için fiyat bilgilerini al
if stock_amount == "stokta":
# Normal fiyat
price_element = item.find('priceTaxWithCur')
price_str = price_element.text if price_element is not None and price_element.text else "0"
# Kampanya fiyatı
price_rebate_element = item.find('priceRebateWithTax')
price_rebate_str = price_rebate_element.text if price_rebate_element is not None and price_rebate_element.text else ""
# Kampanya fiyatı varsa onu kullan, yoksa normal fiyatı kullan
final_price_str = price_str
if price_rebate_str:
try:
normal_price = float(price_str)
rebate_price = float(price_rebate_str)
# Kampanya fiyatı normal fiyattan farklı ve düşükse kullan
if rebate_price < normal_price:
final_price_str = price_rebate_str
except (ValueError, TypeError):
final_price_str = price_str
# EFT fiyatı
price_eft_element = item.find('priceEft')
price_eft_str = price_eft_element.text if price_eft_element is not None and price_eft_element.text else ""
# Ürün linki
link_element = item.find('productLink')
product_link = link_element.text if link_element is not None and link_element.text else ""
# Fiyat formatting (kampanya fiyatı veya normal fiyat)
try:
price_float = float(final_price_str)
if price_float > 200000:
price = str(round(price_float / 5000) * 5000)
elif price_float > 30000:
price = str(round(price_float / 1000) * 1000)
elif price_float > 10000:
price = str(round(price_float / 100) * 100)
else:
price = str(round(price_float / 10) * 10)
except (ValueError, TypeError):
price = final_price_str
# EFT fiyat formatting
if price_eft_str:
try:
price_eft_float = float(price_eft_str)
if price_eft_float > 200000:
price_eft = str(round(price_eft_float / 5000) * 5000)
elif price_eft_float > 30000:
price_eft = str(round(price_eft_float / 1000) * 1000)
elif price_eft_float > 10000:
price_eft = str(round(price_eft_float / 100) * 100)
else:
price_eft = str(round(price_eft_float / 10) * 10)
except (ValueError, TypeError):
price_eft = price_eft_str
else:
try:
price_eft_float = float(price_str)
price_eft = str(round(price_eft_float * 0.975 / 10) * 10)
except:
price_eft = ""
# Ürün bilgilerini tuple olarak oluştur
item_info = (stock_amount, price, product_link, price_eft, str(stock_number))
products.append((name, item_info, full_name))
# Summary disabled for production
# Initialize improved WhatsApp chatbot for BF space
global improved_whatsapp_bot
improved_whatsapp_bot = None
if USE_IMPROVED_SEARCH:
try:
improved_whatsapp_bot = WhatsAppImprovedChatbot(products)
# print("✅ BF Space: Improved WhatsApp product search initialized successfully")
except Exception as e:
logger.error(f"BF Space: Failed to initialize improved WhatsApp search: {e}")
USE_IMPROVED_SEARCH = False
improved_whatsapp_bot = None
# Enhanced features kaldırıldı - GPT-4 doğal dil anlama kullanacak
# print("✅ Basit sistem aktif - GPT-4 doğal dil anlama")
# Marlin debug reports disabled for production
if marlin_count == 0:
pass # No Marlin products found
else:
# Marlin stok raporu
marlin_products = [p for p in products if 'marlin' in p[2].lower()]
marlin_in_stock = [p for p in marlin_products if p[1][0] == "stokta"]
marlin_out_of_stock = [p for p in marlin_products if p[1][0] == "stokta değil"]
# Product lists disabled for production
pass
except Exception as e:
logger.error(f"Ürün yükleme hatası: {e}")
import traceback
traceback.print_exc()
products = []
# ===============================
# STOK API ENTEGRASYONU
# ===============================
STOCK_API_BASE = "https://video.trek-turkey.com/bizimhesap-proxy.php"
# Stock cache (5 dakikalık cache)
stock_cache = {}
CACHE_DURATION = 300 # 5 dakika (saniye cinsinden)
def normalize_turkish(text):
"""Türkçe karakterleri normalize et"""
if not text:
return ""
replacements = {
'ı': 'i', 'İ': 'i', 'ş': 's', 'Ş': 's',
'ğ': 'g', 'Ğ': 'g', 'ü': 'u', 'Ü': 'u',
'ö': 'o', 'Ö': 'o', 'ç': 'c', 'Ç': 'c'
}
text = text.lower()
for tr_char, eng_char in replacements.items():
text = text.replace(tr_char, eng_char)
return text
def fetch_warehouse_inventory(warehouse, product_name, search_terms):
"""Tek bir mağazanın stok bilgisini al"""
try:
warehouse_id = warehouse['id']
warehouse_name = warehouse['title']
# DSW'yi ayrı tut (gelecek stok için)
is_dsw = 'DSW' in warehouse_name or 'ÖN SİPARİŞ' in warehouse_name.upper()
# Mağaza stoklarını al
inventory_url = f"{STOCK_API_BASE}?action=inventory&warehouse={warehouse_id}&endpoint=inventory/{warehouse_id}"
inventory_response = requests.get(inventory_url, timeout=3, verify=False)
if inventory_response.status_code != 200:
return None
inventory_data = inventory_response.json()
# API yanıtını kontrol et
if 'data' not in inventory_data or 'inventory' not in inventory_data['data']:
return None
products = inventory_data['data']['inventory']
# Beden terimleri kontrolü
size_terms = ['xs', 's', 'm', 'ml', 'l', 'xl', 'xxl', '2xl', '3xl', 'small', 'medium', 'large']
size_numbers = ['44', '46', '48', '50', '52', '54', '56', '58', '60']
# Arama terimlerinde beden var mı kontrol et
has_size_query = False
size_query = None
for term in search_terms:
if term in size_terms or term in size_numbers:
has_size_query = True
size_query = term
break
# Eğer sadece beden sorgusu varsa (ör: "m", "xl")
is_only_size_query = len(search_terms) == 1 and has_size_query
# Ürünü ara
warehouse_variants = []
dsw_stock_count = 0
for product in products:
product_title = normalize_turkish(product.get('title', '')).lower()
original_title = product.get('title', '')
# Eğer sadece beden sorgusu ise
if is_only_size_query:
# Beden terimini ürün başlığında ara (parantez içinde veya dışında)
if size_query in product_title.split() or f'({size_query})' in product_title or f' {size_query} ' in product_title or product_title.endswith(f' {size_query}'):
qty = int(product.get('qty', 0))
stock = int(product.get('stock', 0))
actual_stock = max(qty, stock)
if actual_stock > 0:
if is_dsw:
dsw_stock_count += actual_stock
continue
warehouse_variants.append(f"{original_title}: ✓ Stokta")
else:
# Normal ürün araması - tüm terimler eşleşmeli
# Ama beden terimi varsa özel kontrol yap
if has_size_query:
# Beden hariç diğer terimleri kontrol et
non_size_terms = [t for t in search_terms if t != size_query]
product_matches = all(term in product_title for term in non_size_terms)
# Beden kontrolü - daha esnek
size_matches = size_query in product_title.split() or f'({size_query})' in product_title or f' {size_query} ' in product_title or product_title.endswith(f' {size_query}')
if product_matches and size_matches:
qty = int(product.get('qty', 0))
stock = int(product.get('stock', 0))
actual_stock = max(qty, stock)
if actual_stock > 0:
if is_dsw:
dsw_stock_count += actual_stock
continue
# Varyant bilgisini göster
variant_info = original_title
possible_names = [
product_name.upper(),
product_name.lower(),
product_name.title(),
product_name.upper().replace('I', 'İ'),
product_name.upper().replace('İ', 'I'),
]
if 'fx sport' in product_name.lower():
possible_names.extend(['FX Sport AL 3', 'FX SPORT AL 3', 'Fx Sport Al 3'])
for possible_name in possible_names:
variant_info = variant_info.replace(possible_name, '').strip()
variant_info = ' '.join(variant_info.split())
if variant_info and variant_info != original_title:
warehouse_variants.append(f"{variant_info}: ✓ Stokta")
else:
warehouse_variants.append(f"{original_title}: ✓ Stokta")
else:
# Beden sorgusu yoksa normal kontrol
if all(term in product_title for term in search_terms):
qty = int(product.get('qty', 0))
stock = int(product.get('stock', 0))
actual_stock = max(qty, stock)
if actual_stock > 0:
if is_dsw:
dsw_stock_count += actual_stock
continue
variant_info = original_title
possible_names = [
product_name.upper(),
product_name.lower(),
product_name.title(),
product_name.upper().replace('I', 'İ'),
product_name.upper().replace('İ', 'I'),
]
if 'fx sport' in product_name.lower():
possible_names.extend(['FX Sport AL 3', 'FX SPORT AL 3', 'Fx Sport Al 3'])
for possible_name in possible_names:
variant_info = variant_info.replace(possible_name, '').strip()
variant_info = ' '.join(variant_info.split())
if variant_info and variant_info != original_title:
warehouse_variants.append(f"{variant_info}: ✓ Stokta")
else:
warehouse_variants.append(f"{original_title}: ✓ Stokta")
# Sonuç döndür
if warehouse_variants and not is_dsw:
return {'warehouse': warehouse_name, 'variants': warehouse_variants, 'is_dsw': False}
elif dsw_stock_count > 0:
return {'dsw_stock': dsw_stock_count, 'is_dsw': True}
return None
except Exception:
return None
def get_realtime_stock_parallel(product_name):
"""API'den gerçek zamanlı stok bilgisini çek - Paralel versiyon with cache"""
try:
# Cache kontrolü
cache_key = normalize_turkish(product_name).lower()
current_time = time.time()
if cache_key in stock_cache:
cached_data, cached_time = stock_cache[cache_key]
# Cache hala geçerli mi?
if current_time - cached_time < CACHE_DURATION:
logger.info(f"Cache'den döndürülüyor: {product_name}")
return cached_data
# Önce mağaza listesini al
warehouses_url = f"{STOCK_API_BASE}?action=warehouses&endpoint=warehouses"
warehouses_response = requests.get(warehouses_url, timeout=3, verify=False)
if warehouses_response.status_code != 200:
logger.error(f"Mağaza listesi alınamadı: {warehouses_response.status_code}")
return None
warehouses_data = warehouses_response.json()
# API yanıtını kontrol et
if 'data' not in warehouses_data or 'warehouses' not in warehouses_data['data']:
logger.error("Mağaza verisi bulunamadı")
return None
warehouses = warehouses_data['data']['warehouses']
# Ürün adını normalize et
search_terms = normalize_turkish(product_name).lower().split()
logger.info(f"Aranan ürün: {product_name} -> {search_terms}")
stock_info = {}
total_dsw_stock = 0
total_stock = 0
# Paralel olarak tüm mağazaları sorgula
with ThreadPoolExecutor(max_workers=10) as executor:
# Tüm mağazalar için görev oluştur
futures = {
executor.submit(fetch_warehouse_inventory, warehouse, product_name, search_terms): warehouse
for warehouse in warehouses
}
# Sonuçları topla
for future in as_completed(futures):
result = future.result()
if result:
if result.get('is_dsw'):
total_dsw_stock += result.get('dsw_stock', 0)
else:
warehouse_name = result['warehouse']
stock_info[warehouse_name] = result['variants']
total_stock += 1 # En az bir mağazada var
# Sonucu oluştur
if not stock_info:
# Mağazada yok ama DSW'de varsa
if total_dsw_stock > 0:
result = f"{product_name}: Şu anda mağazalarda stokta yok, ancak yakında gelecek. Ön sipariş verebilirsiniz."
else:
result = f"{product_name}: Şu anda hiçbir mağazada stokta bulunmuyor."
else:
# Minimal prompt oluştur - varyant detaylarıyla
prompt_lines = [f"{product_name} stok durumu:"]
for warehouse, variants in stock_info.items():
if isinstance(variants, list):
prompt_lines.append(f"- {warehouse}:")
for variant in variants:
prompt_lines.append(f" • {variant}")
else:
prompt_lines.append(f"- {warehouse}: {variants}")
# Güvenlik: Toplam adet bilgisi gösterme
if total_stock > 0:
prompt_lines.append(f"✓ Ürün stokta mevcut")
result = "\n".join(prompt_lines)
# Sonucu cache'e kaydet
stock_cache[cache_key] = (result, current_time)
return result
except Exception as e:
logger.error(f"API hatası: {e}")
return None
def is_stock_query(message):
"""Mesajın stok sorgusu olup olmadığını kontrol et"""
stock_keywords = ['stok', 'stock', 'var mı', 'mevcut mu', 'kaç adet',
'kaç tane', 'bulunuyor mu', 'hangi mağaza',
'nerede var', 'beden', 'numara']
message_lower = message.lower()
return any(keyword in message_lower for keyword in stock_keywords)
# Sistem mesajları - Modüler prompts'tan yükle
def get_system_messages():
return get_prompt_content_only() # prompts.py'dan yükle
# ===============================
# SOHBET HAFIZASI SİSTEMİ
# ===============================
# Sohbet hafızası için basit bir dictionary
conversation_memory = {}
def get_conversation_context(phone_number):
"""Kullanıcının sohbet geçmişini getir"""
if phone_number not in conversation_memory:
conversation_memory[phone_number] = {
"messages": [],
"current_category": None,
"last_activity": None
}
return conversation_memory[phone_number]
def add_to_conversation(phone_number, user_message, ai_response):
"""Sohbet geçmişine ekle"""
import datetime
context = get_conversation_context(phone_number)
context["last_activity"] = datetime.datetime.now()
context["messages"].append({
"user": user_message,
"ai": ai_response,
"timestamp": datetime.datetime.now()
})
# Sadece son 10 mesajı tut
if len(context["messages"]) > 10:
context["messages"] = context["messages"][-10:]
detect_category(phone_number, user_message, ai_response)
def detect_category(phone_number, user_message, ai_response):
"""Konuşulan kategoriyi tespit et"""
context = get_conversation_context(phone_number)
categories = {
"marlin": ["marlin", "marlin+"],
"madone": ["madone"],
"emonda": ["emonda", "émonda"],
"domane": ["domane"],
"checkpoint": ["checkpoint"],
"fuel": ["fuel", "fuel ex", "fuel exe"],
"procaliber": ["procaliber"],
"supercaliber": ["supercaliber"],
"fx": ["fx"],
"ds": ["ds", "dual sport"],
"powerfly": ["powerfly"],
"rail": ["rail"],
"verve": ["verve"],
"townie": ["townie"]
}
user_lower = user_message.lower()
for category, keywords in categories.items():
for keyword in keywords:
if keyword in user_lower:
context["current_category"] = category
return category
return context.get("current_category")
def build_context_messages(phone_number, current_message):
"""Sohbet geçmişi ile sistem mesajlarını oluştur"""
context = get_conversation_context(phone_number)
system_messages = get_system_messages()
# Mevcut kategori varsa, sistem mesajına ekle
if context.get("current_category"):
category_msg = f"Kullanıcı şu anda {context['current_category'].upper()} kategorisi hakkında konuşuyor. Tüm cevaplarını bu kategori bağlamında ver. Kullanıcı yeni bir kategori belirtmediği sürece {context['current_category']} hakkında bilgi vermek istediğini varsay."
system_messages.append({"role": "system", "content": category_msg})
# Son 3 mesaj alışverişini ekle
recent_messages = context["messages"][-3:] if context["messages"] else []
all_messages = system_messages.copy()
# Geçmiş mesajları ekle
for msg in recent_messages:
all_messages.append({"role": "user", "content": msg["user"]})
all_messages.append({"role": "assistant", "content": msg["ai"]})
# Mevcut mesajı ekle
all_messages.append({"role": "user", "content": current_message})
return all_messages
def process_whatsapp_message_with_media(user_message, phone_number, media_urls, media_types):
"""Medya içeriği olan WhatsApp mesajı işleme - GPT-5 Vision ile"""
try:
logger.info(f"🖼️ Medya analizi başlıyor: {len(media_urls)} medya")
# Pasif profil analizi
profile_analysis = analyze_user_message(phone_number, user_message)
logger.info(f"📊 Profil analizi: {phone_number} -> {profile_analysis}")
# Sohbet geçmişi ile sistem mesajlarını oluştur
messages = build_context_messages(phone_number, user_message if user_message else "Gönderilen görseli analiz et")
# GPT-5 Vision için mesaj hazırla
vision_message = {
"role": "user",
"content": []
}
# Metin mesajı varsa ekle
if user_message and user_message.strip():
vision_message["content"].append({
"type": "text",
"text": user_message
})
else:
vision_message["content"].append({
"type": "text",
"text": "Bu görselde ne var? Detaylı açıkla."
})
# Medya URL'lerini ekle (Twilio medya URL'leri için proxy kullan)
for i, media_url in enumerate(media_urls):
media_type = media_types[i] if i < len(media_types) else "image/jpeg"
# Sadece görsel medyaları işle
if media_type and media_type.startswith('image/'):
# Twilio medya URL'sini proxy üzerinden çevir
if 'api.twilio.com' in media_url:
# URL'den message SID ve media SID'yi çıkar
import re
match = re.search(r'/Messages/([^/]+)/Media/([^/]+)', media_url)
if match:
message_sid = match.group(1)
media_sid = match.group(2)
# Proxy URL'sini oluştur
proxy_url = f"https://video.trek-turkey.com/twilio-media-proxy.php?action=media&message={message_sid}&media={media_sid}"
logger.info(f"🔄 Proxy URL: {proxy_url}")
vision_message["content"].append({
"type": "image_url",
"image_url": {
"url": proxy_url
}
})
else:
# Diğer URL'leri doğrudan kullan
vision_message["content"].append({
"type": "image_url",
"image_url": {
"url": media_url
}
})
# Son user mesajını vision mesajıyla değiştir
messages = [msg for msg in messages if msg.get("role") != "user" or msg != messages[-1]]
messages.append(vision_message)
# Sistem mesajına bisiklet tanıma talimatı ekle
messages.insert(0, {
"role": "system",
"content": "Gönderilen görsellerde bisiklet veya bisiklet parçaları varsa, bunları detaylıca tanımla. Marka, model, renk, özellikler gibi detayları belirt. Eğer Trek bisiklet ise modeli tahmin etmeye çalış. Stok durumu sorulursa, görseldeki bisikletin özelliklerini belirterek stok kontrolü yapılması gerektiğini söyle."
})
if not OPENAI_API_KEY:
return "OpenAI API anahtarı eksik. Lütfen environment variables'ları kontrol edin."
logger.info(f"📤 GPT-5 Vision'a gönderiliyor: {len(messages)} mesaj")
payload = {
"model": "gpt-5-chat-latest",
"messages": messages,
"temperature": 0, # Deterministik cevaplar için
"max_tokens": 800,
"stream": False,
"top_p": 0.1, # Daha tutarlı cevaplar için düşük değer
"frequency_penalty": 0.1, # Tekrarları azaltmak için
"presence_penalty": 0 # Yeni konulara açık olması için
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
ai_response = result['choices'][0]['message']['content']
# WhatsApp için formatla
formatted_response = extract_product_info_whatsapp(ai_response)
# Sohbet geçmişine ekle
add_to_conversation(phone_number, f"[Görsel gönderildi] {user_message if user_message else ''}", formatted_response)
return formatted_response
else:
logger.error(f"OpenAI API Error: {response.status_code} - {response.text}")
return f"Görsel analizi başarısız oldu. Lütfen tekrar deneyin."
except Exception as e:
logger.error(f"❌ Medya işleme hatası: {e}")
import traceback
traceback.print_exc()
return "Görsel işlenirken bir hata oluştu. Lütfen tekrar deneyin."
def process_whatsapp_message_with_memory(user_message, phone_number):
"""Hafızalı WhatsApp mesaj işleme"""
try:
# 🔔 Yeni Mağaza Bildirim Sistemi - Mehmet Bey'e otomatik bildirim
if USE_STORE_NOTIFICATION:
# Önce basit keyword kontrolü yap
should_notify_mehmet, notification_reason, urgency = should_notify_mehmet_bey(user_message)
# Eğer keyword'le yakalanmadıysa ve Intent Analyzer varsa, onu da kontrol et
if not should_notify_mehmet and USE_INTENT_ANALYZER:
context = get_conversation_context(phone_number)
intent_analysis = analyze_customer_intent(user_message, context)
should_notify_mehmet, notification_reason, urgency = should_notify_mehmet_bey(user_message, intent_analysis)
else:
intent_analysis = None
if should_notify_mehmet:
# Ürün bilgisini belirle
if intent_analysis:
product = intent_analysis.get("product") or "Belirtilmemiş"
else:
# Basit keyword'den ürün çıkar
context = get_conversation_context(phone_number)
product = context.get("current_category") or "Ürün belirtilmemiş"
# Bildirim tipini belirle
if "rezervasyon" in notification_reason.lower() or urgency == "high":
action = "reserve"
elif "mağaza" in notification_reason.lower() or "lokasyon" in notification_reason.lower():
action = "info"
elif "fiyat" in notification_reason.lower() or "ödeme" in notification_reason.lower():
action = "price"
else:
action = "info"
# Detaylı bilgi mesajı
additional_info = f"{notification_reason}\n\nMüşteri Mesajı: '{user_message}'"
if urgency == "high":
additional_info = "⚠️ YÜKSEK ÖNCELİK ⚠️\n" + additional_info
# Bildirim gönder
result = send_store_notification(
customer_phone=phone_number,
customer_name=None,
product_name=product,
action=action,
store_name=None,
additional_info=additional_info
)
if result:
logger.info(f"✅ Mehmet Bey'e bildirim gönderildi!")
logger.info(f" 📍 Sebep: {notification_reason}")
logger.info(f" ⚡ Öncelik: {urgency}")
logger.info(f" 📦 Ürün: {product}")
else:
logger.error("❌ Mehmet Bey'e bildirim gönderilemedi")
# 🧠 Pasif profil analizi - kullanıcı mesajını analiz et
profile_analysis = analyze_user_message(phone_number, user_message)
logger.info(f"📊 Profil analizi: {phone_number} -> {profile_analysis}")
# 🎯 Kişiselleştirilmiş öneriler kontrolü
if any(keyword in user_message.lower() for keyword in ["öneri", "öner", "tavsiye", "ne önerirsin"]):
personalized = get_personalized_recommendations(phone_number, products)
if personalized.get("personalized") and personalized.get("recommendations"):
# Kullanıcı profiline göre özelleştirilmiş cevap hazırla
profile_summary = get_user_profile_summary(phone_number)
custom_response = create_personalized_response(personalized, profile_summary)
return extract_product_info_whatsapp(custom_response)
# Enhanced features kaldırıldı - GPT-4 doğal dil anlama kullanacak
# Sohbet geçmişi ile sistem mesajlarını oluştur
messages = build_context_messages(phone_number, user_message)
# 🎯 Profil bilgilerini sistem mesajlarına ekle
profile_summary = get_user_profile_summary(phone_number)
if profile_summary.get("exists") and profile_summary.get("confidence", 0) > 0.3:
profile_context = create_profile_context_message(profile_summary)
messages.append({"role": "system", "content": profile_context})
# 🔍 BF Space: Use improved product search if available
product_found_improved = False
if USE_IMPROVED_SEARCH and improved_whatsapp_bot:
try:
product_result = improved_whatsapp_bot.process_message(user_message)
if product_result['is_product_query'] and product_result['response']:
# Check if user is asking about specific warehouse/store location
if any(keyword in user_message.lower() for keyword in ['mağaza', 'mağazada', 'nerede', 'hangi mağaza', 'şube']):
# First, always search for products using improved search
# This will find products even with partial/typo names
warehouse_info_parts = []
# Use the response text from improved search to extract product names
if product_result['response']:
# Extract product names from the response
import re
# Look for product names in bold (between * markers)
product_names = re.findall(r'\*([^*]+)\*', product_result['response'])
if product_names:
for product_name in product_names[:3]: # Max 3 products
# Clean up the product name
product_name = product_name.strip()
# Remove numbering like "1." "2." from the beginning
import re
product_name = re.sub(r'^\d+\.\s*', '', product_name)
# Skip status indicators
if product_name in ['Stokta mevcut', 'Stokta yok', 'Fiyat:', 'Kampanya:', 'İndirim:', 'Birden fazla ürün buldum:']:
continue
warehouse_stock = get_warehouse_stock(product_name)
if warehouse_stock and warehouse_stock != ['Ürün bulunamadı'] and warehouse_stock != ['Hiçbir mağazada stokta bulunmuyor']:
warehouse_info_parts.append(f"{product_name} mağaza stogu:")
warehouse_info_parts.extend(warehouse_stock)
warehouse_info_parts.append("")
break # Found warehouse info, stop searching
# If still no warehouse info, use products_found as backup
if not warehouse_info_parts and product_result['products_found']:
for product in product_result['products_found'][:2]:
product_name = product[2] # Full product name
warehouse_stock = get_warehouse_stock(product_name)
if warehouse_stock and warehouse_stock != ['Ürün bulunamadı'] and warehouse_stock != ['Hiçbir mağazada stokta bulunmuyor']:
warehouse_info_parts.append(f"{product_name} mağaza stogu:")
warehouse_info_parts.extend(warehouse_stock)
warehouse_info_parts.append("")
break
if warehouse_info_parts:
warehouse_response = "\n".join(warehouse_info_parts)
messages.append({
"role": "system",
"content": f"MAĞAZA STOK BİLGİSİ (BF Space):\n{warehouse_response}\n\nSADECE bu bilgileri kullanarak kullanıcıya yardımcı ol."
})
product_found_improved = True
logger.info("✅ BF Space: Warehouse stock info used")
if not product_found_improved:
# Use improved search response directly
messages.append({
"role": "system",
"content": f"ÜRÜN BİLGİSİ (BF Space):\n{product_result['response']}\n\nSADECE bu bilgileri kullanarak kullanıcıya yardımcı ol. Bu bilgiler dışında ek bilgi ekleme."
})
product_found_improved = True
logger.info("✅ BF Space: Improved product search used")
except Exception as e:
logger.error(f"❌ BF Space: Improved search error: {e}")
# Fallback to warehouse search if improved search didn't work
if not product_found_improved:
# Check if message seems to be asking about products
product_keywords = ['fiyat', 'kaç', 'stok', 'var mı', 'mevcut', 'bisiklet', 'bike',
'trek', 'model', 'beden', 'renk', 'mağaza', 'nerede', 'hangi']
# Common non-product responses
non_product_responses = ['süper', 'harika', 'güzel', 'teşekkür', 'tamam', 'olur',
'evet', 'hayır', 'peki', 'anladım', 'tamamdır']
is_product_query = False
lower_message = user_message.lower()
# Check if it's likely a product query
if any(keyword in lower_message for keyword in product_keywords):
is_product_query = True
# Check if it's NOT a simple response
elif lower_message not in non_product_responses and len(lower_message.split()) > 1:
# Multi-word queries might be product searches
is_product_query = True
# Single short words are usually not products
elif len(lower_message.split()) == 1 and len(lower_message) < 6:
is_product_query = False
if is_product_query:
# Use GPT-5 warehouse search for product queries
logger.info("📦 Using GPT-5 warehouse search")
warehouse_result = get_warehouse_stock(user_message)
if warehouse_result and warehouse_result != ['Ürün bulunamadı']:
warehouse_response = "\n".join(warehouse_result)
messages.append({
"role": "system",
"content": f"MAĞAZA STOK BİLGİSİ:\n{warehouse_response}\n\nBu bilgileri kullanarak kullanıcıya yardımcı ol. Fiyat ve stok bilgilerini AYNEN kullan."
})
logger.info(f"✅ Warehouse stock info added: {warehouse_response[:200]}...")
else:
logger.info(f"🚫 Skipping product search for: '{user_message}'")
if not OPENAI_API_KEY:
return "OpenAI API anahtarı eksik. Lütfen environment variables'ları kontrol edin."
# Debug: Log what we're sending to GPT
logger.info(f"📤 Sending to GPT-5: {len(messages)} messages")
for i, msg in enumerate(messages):
if msg.get('role') == 'system':
content_preview = msg.get('content', '')[:500]
if 'Fiyat:' in content_preview or 'TL' in content_preview:
logger.info(f"💰 System message with price info: {content_preview}")
payload = {
"model": "gpt-5-chat-latest",
"messages": messages,
"temperature": 0, # Deterministik cevaplar için
"max_tokens": 800,
"stream": False,
"top_p": 0.1, # Daha tutarlı cevaplar için düşük değer
"frequency_penalty": 0.1, # Tekrarları azaltmak için
"presence_penalty": 0 # Yeni konulara açık olması için
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
ai_response = result['choices'][0]['message']['content']
# WhatsApp için resim URL'lerini formatla
formatted_response = extract_product_info_whatsapp(ai_response)
# Sohbet geçmişine ekle
add_to_conversation(phone_number, user_message, formatted_response)
return formatted_response
else:
print(f"OpenAI API Error: {response.status_code} - {response.text}")
return f"API hatası: {response.status_code}. Lütfen daha sonra tekrar deneyin."
except Exception as e:
print(f"❌ WhatsApp mesaj işleme hatası: {e}")
import traceback
traceback.print_exc()
logger.error(f"Detailed error: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
return "Teknik bir sorun oluştu. Lütfen daha sonra tekrar deneyin."
def create_profile_context_message(profile_summary):
"""Profil bilgilerini sistem mesajına çevir"""
context_parts = []
preferences = profile_summary.get("preferences", {})
behavior = profile_summary.get("behavior", {})
# Bütçe bilgisi
if preferences.get("budget_min") and preferences.get("budget_max"):
budget_min = preferences["budget_min"]
budget_max = preferences["budget_max"]
context_parts.append(f"Kullanıcının bütçesi: {budget_min:,}-{budget_max:,} TL")
# Kategori tercihleri
if preferences.get("categories"):
categories = ", ".join(preferences["categories"])
context_parts.append(f"İlgilendiği kategoriler: {categories}")
# Kullanım amacı
if preferences.get("usage_purpose"):
purposes = ", ".join(preferences["usage_purpose"])
context_parts.append(f"Kullanım amacı: {purposes}")
# Davranış kalıpları
if behavior.get("price_sensitive"):
context_parts.append("Fiyata duyarlı bir kullanıcı")
if behavior.get("tech_interested"):
context_parts.append("Teknik detaylarla ilgilenen bir kullanıcı")
if behavior.get("comparison_lover"):
context_parts.append("Karşılaştırma yapmayı seven bir kullanıcı")
# Etkileşim stili
interaction_style = profile_summary.get("interaction_style", "balanced")
style_descriptions = {
"analytical": "Detaylı ve analitik bilgi bekleyen",
"budget_conscious": "Bütçe odaklı ve ekonomik seçenekleri arayan",
"technical": "Teknik özellikler ve spesifikasyonlarla ilgilenen",
"decisive": "Hızlı karar veren ve özet bilgi isteyen",
"balanced": "Dengeli yaklaşım sergileyen"
}
context_parts.append(f"{style_descriptions.get(interaction_style, 'balanced')} bir kullanıcı")
if context_parts:
return f"Kullanıcı profili: {'. '.join(context_parts)}. Bu bilgileri göz önünde bulundurarak cevap ver."
return ""
def create_personalized_response(personalized_data, profile_summary):
"""Kişiselleştirilmiş öneri cevabı oluştur"""
response_parts = []
# Kullanıcı stiline göre selamlama
interaction_style = profile_summary.get("interaction_style", "balanced")
if interaction_style == "analytical":
response_parts.append("🔍 Profilinizi analiz ederek sizin için en uygun seçenekleri belirledim:")
elif interaction_style == "budget_conscious":
response_parts.append("💰 Bütçenize uygun en iyi seçenekleri hazırladım:")
elif interaction_style == "technical":
response_parts.append("⚙️ Teknik tercihlerinize göre önerilerim:")
else:
response_parts.append("🎯 Size özel seçtiklerim:")
# Önerileri listele
recommendations = personalized_data.get("recommendations", [])[:3] # İlk 3 öneri
if recommendations:
response_parts.append("\n")
for i, product in enumerate(recommendations, 1):
name, item_info, full_name = product
price = item_info[1] if len(item_info) > 1 else "Fiyat yok"
response_parts.append(f"**{i}. {full_name}**")
response_parts.append(f"💰 Fiyat: {price} TL")
response_parts.append("")
# Profil bazlı açıklama
preferences = profile_summary.get("preferences", {})
if preferences.get("categories"):
category = preferences["categories"][0]
response_parts.append(f"Bu öneriler {category} kategorisindeki ilginizi ve tercihlerinizi dikkate alarak hazırlandı.")
return "\n".join(response_parts)
def split_long_message(message, max_length=1600):
"""Uzun mesajları WhatsApp için uygun parçalara böler"""
if len(message) <= max_length:
return [message]
parts = []
remaining = message
while len(remaining) > max_length:
cut_point = max_length
# Geriye doğru git ve uygun kesme noktası ara
for i in range(max_length, max_length - 200, -1):
if i < len(remaining) and remaining[i] in ['.', '!', '?', '\n']:
cut_point = i + 1
break
elif i < len(remaining) and remaining[i] in [' ', ',', ';']:
cut_point = i
parts.append(remaining[:cut_point].strip())
remaining = remaining[cut_point:].strip()
if remaining:
parts.append(remaining)
return parts
# ===============================
# HAFIZA SİSTEMİ SONU
# ===============================
# WhatsApp mesajı işleme (eski fonksiyon - yedek için)
def process_whatsapp_message(user_message):
try:
system_messages = get_system_messages()
# 🔍 BF Space: Use improved product search if available (backup function)
product_found_improved = False
if USE_IMPROVED_SEARCH and improved_whatsapp_bot:
try:
product_result = improved_whatsapp_bot.process_message(user_message)
if product_result['is_product_query'] and product_result['response']:
# Check if user is asking about specific warehouse/store location
if any(keyword in user_message.lower() for keyword in ['mağaza', 'mağazada', 'nerede', 'hangi mağaza', 'şube']):
# Get warehouse stock info for the found products
if product_result['products_found']:
warehouse_info_parts = []
for product in product_result['products_found'][:2]: # Max 2 products
product_name = product[2] # Full product name
warehouse_stock = get_warehouse_stock(product_name)
if warehouse_stock:
warehouse_info_parts.append(f"{product_name} mağaza stogu:")
warehouse_info_parts.extend(warehouse_stock)
warehouse_info_parts.append("")
if warehouse_info_parts:
warehouse_response = "\n".join(warehouse_info_parts)
system_messages.append({
"role": "system",
"content": f"MAĞAZA STOK BİLGİSİ (BF Space Backup):\n{warehouse_response}\n\nSADECE bu bilgileri kullanarak kullanıcıya yardımcı ol."
})
product_found_improved = True
if not product_found_improved:
system_messages.append({
"role": "system",
"content": f"ÜRÜN BİLGİSİ (BF Space Backup):\n{product_result['response']}\n\nSADECE bu bilgileri kullanarak kullanıcıya yardımcı ol. Bu bilgiler dışında ek bilgi ekleme."
})
product_found_improved = True
except Exception as e:
logger.error(f"BF Space backup: Improved search error: {e}")
# Fallback to basic search
if not product_found_improved:
# Ürün bilgilerini kontrol et (basic search)
input_words = user_message.lower().split()
for product_info in products:
if product_info[0] in input_words:
if product_info[1][0] == "stokta":
normal_price = f"Fiyat: {product_info[1][1]} TL"
if product_info[1][3]:
eft_price = f"Havale: {product_info[1][3]} TL"
price_info = f"{normal_price}, {eft_price}"
else:
price_info = normal_price
new_msg = f"{product_info[2]} {product_info[1][0]} - {price_info}"
else:
new_msg = f"{product_info[2]} {product_info[1][0]}"
system_messages.append({"role": "system", "content": new_msg})
break
messages = system_messages + [{"role": "user", "content": user_message}]
if not OPENAI_API_KEY:
return "OpenAI API anahtarı eksik. Lütfen environment variables'ları kontrol edin."
payload = {
"model": "gpt-5-chat-latest",
"messages": messages,
"temperature": 0, # Deterministik cevaplar için
"max_tokens": 800,
"stream": False,
"top_p": 0.1, # Daha tutarlı cevaplar için düşük değer
"frequency_penalty": 0.1, # Tekrarları azaltmak için
"presence_penalty": 0 # Yeni konulara açık olması için
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result['choices'][0]['message']['content']
else:
print(f"OpenAI API Error: {response.status_code} - {response.text}")
return f"API hatası: {response.status_code}. Lütfen daha sonra tekrar deneyin."
except Exception as e:
print(f"❌ WhatsApp mesaj işleme hatası: {e}")
import traceback
traceback.print_exc()
logger.error(f"Detailed error: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
return "Teknik bir sorun oluştu. Lütfen daha sonra tekrar deneyin."
# FastAPI uygulaması
app = FastAPI()
@app.post("/whatsapp-webhook")
async def whatsapp_webhook(request: Request):
try:
form_data = await request.form()
from_number = form_data.get('From')
to_number = form_data.get('To')
message_body = form_data.get('Body')
message_status = form_data.get('MessageStatus')
# Medya içeriği kontrolü
num_media = form_data.get('NumMedia', '0')
media_urls = []
media_types = []
# Medya varsa URL'leri topla
if num_media and int(num_media) > 0:
for i in range(int(num_media)):
media_url = form_data.get(f'MediaUrl{i}')
media_type = form_data.get(f'MediaContentType{i}')
if media_url:
media_urls.append(media_url)
media_types.append(media_type)
logger.info(f"📸 Medya alındı: {media_type} - {media_url[:100]}...")
print(f"📱 Webhook - From: {from_number}, Body: {message_body}, Status: {message_status}")
# Durum güncellemelerini ignore et
if message_status in ['sent', 'delivered', 'read', 'failed']:
return {"status": "ignored", "message": f"Status: {message_status}"}
# Giden mesajları ignore et
if to_number != TWILIO_WHATSAPP_NUMBER:
return {"status": "ignored", "message": "Outgoing message"}
# Media Queue V2 İşleme
if USE_MEDIA_QUEUE:
if media_urls:
# Medya mesajı geldi
logger.info(f"📸 Media Queue V2: Medya alındı - {from_number}")
# Media Queue'ya ekle ve bekleme mesajı al
wait_message = media_queue.handle_media(
from_number,
media_urls,
media_types,
message_body or ""
)
# Bekleme mesajını gönder
if twilio_client:
twilio_client.messages.create(
messaging_service_sid=TWILIO_MESSAGING_SERVICE_SID,
body=wait_message,
to=from_number
)
logger.info(f"📤 Bekleme mesajı gönderildi: {wait_message}")
return {"status": "media_queued", "message": wait_message}
else:
# Metin mesajı geldi - cache'de medya var mı kontrol et
combined_text, cached_media_urls, cached_media_types = media_queue.handle_text(from_number, message_body)
if combined_text and cached_media_urls:
# Medya + metin birleştirildi
logger.info(f"✅ Media Queue V2: Birleştirildi - {from_number}")
logger.info(f" Birleşik mesaj: {combined_text[:100]}...")
logger.info(f" Medya sayısı: {len(cached_media_urls)}")
# Birleştirilmiş mesajı işle
message_body = combined_text
media_urls = cached_media_urls
media_types = cached_media_types
# Aşağıdaki normal akışa devam et
else:
# Normal metin mesajı, cache'de medya yok
logger.info(f"💬 Media Queue V2: Normal metin - {from_number}")
# Normal akışa devam et
# Boş mesaj kontrolü
if not message_body or message_body.strip() == "":
if not media_urls: # Medya da yoksa ignore et
return {"status": "ignored", "message": "Empty message"}
print(f"✅ MESAJ ALINDI: {from_number} -> {message_body}")
if not twilio_client:
return {"status": "error", "message": "Twilio yapılandırması eksik"}
# HAFIZALİ MESAJ İŞLEME - Medya desteği ile
if media_urls:
# Medya varsa, görsel analiz yap
ai_response = process_whatsapp_message_with_media(message_body, from_number, media_urls, media_types)
else:
# Normal metin mesajı işle
ai_response = process_whatsapp_message_with_memory(message_body, from_number)
# Mesajı parçalara böl
message_parts = split_long_message(ai_response, max_length=1600)
sent_messages = []
# Her parçayı sırayla gönder
for i, part in enumerate(message_parts):
if len(message_parts) > 1:
if i == 0:
part = f"{part}\n\n(1/{len(message_parts)})"
elif i == len(message_parts) - 1:
part = f"({i+1}/{len(message_parts)})\n\n{part}"
else:
part = f"({i+1}/{len(message_parts)})\n\n{part}"
# WhatsApp'a gönder
message = twilio_client.messages.create(
messaging_service_sid=TWILIO_MESSAGING_SERVICE_SID,
body=part,
to=from_number
)
sent_messages.append(message.sid)
if i < len(message_parts) - 1:
import time
time.sleep(0.5)
print(f"✅ {len(message_parts)} PARÇA GÖNDERİLDİ")
# Debug için mevcut kategoriyi logla
context = get_conversation_context(from_number)
if context.get("current_category"):
print(f"💭 Aktif kategori: {context['current_category']}")
return {
"status": "success",
"message_parts": len(message_parts),
"message_sids": sent_messages,
"current_category": context.get("current_category")
}
except Exception as e:
print(f"❌ Webhook hatası: {str(e)}")
return {"status": "error", "message": str(e)}
@app.get("/")
async def root():
return {"message": "Trek WhatsApp Bot çalışıyor!", "status": "active"}
# Hafızayı temizleme endpoint'i
@app.get("/clear-memory/{phone_number}")
async def clear_memory(phone_number: str):
"""Belirli bir telefon numarasının hafızasını temizle"""
if phone_number in conversation_memory:
del conversation_memory[phone_number]
return {"status": "success", "message": f"{phone_number} hafızası temizlendi"}
return {"status": "info", "message": "Hafıza bulunamadı"}
# Tüm hafızayı görme endpoint'i
@app.get("/debug-memory")
async def debug_memory():
"""Tüm hafızayı görüntüle (debug için)"""
memory_info = {}
for phone, context in conversation_memory.items():
memory_info[phone] = {
"current_category": context.get("current_category"),
"message_count": len(context.get("messages", [])),
"last_activity": str(context.get("last_activity"))
}
return {"conversation_memory": memory_info}
# Profil bilgilerini görme endpoint'i
@app.get("/debug-profile/{phone_number}")
async def debug_profile(phone_number: str):
"""Belirli kullanıcının profil bilgilerini görüntüle"""
profile_summary = get_user_profile_summary(phone_number)
return {"phone_number": phone_number, "profile": profile_summary}
# Tüm profilleri görme endpoint'i
@app.get("/debug-profiles")
async def debug_profiles():
"""Tüm kullanıcı profillerini görüntüle"""
from whatsapp_passive_profiler import passive_profiler
all_profiles = {}
for phone_number in passive_profiler.profiles.keys():
all_profiles[phone_number] = get_user_profile_summary(phone_number)
return {"profiles": all_profiles}
@app.get("/health")
async def health():
return {
"status": "healthy",
"twilio_configured": twilio_client is not None,
"openai_configured": OPENAI_API_KEY is not None,
"products_loaded": len(products),
"webhook_endpoint": "/whatsapp-webhook"
}
@app.get("/test-madone")
async def test_madone():
"""Test MADONE search directly"""
from smart_warehouse_with_price import get_warehouse_stock_smart_with_price
# Set a test API key if needed
import os
if not os.getenv("OPENAI_API_KEY"):
return {"error": "No OPENAI_API_KEY set"}
try:
result = get_warehouse_stock_smart_with_price("madone sl 6")
return {
"query": "madone sl 6",
"result": result if result else "No result",
"api_key_set": bool(os.getenv("OPENAI_API_KEY"))
}
except Exception as e:
return {"error": str(e), "type": type(e).__name__}
@app.post("/test-vision")
async def test_vision(request: Request):
"""Test vision capabilities with a sample image URL"""
try:
data = await request.json()
image_url = data.get("image_url")
text = data.get("text", "Bu görselde ne var?")
if not image_url:
return {"error": "image_url is required"}
# Test vision API
messages = [
{
"role": "system",
"content": "Sen bir bisiklet uzmanısın. Görselleri analiz et ve detaylı bilgi ver."
},
{
"role": "user",
"content": [
{"type": "text", "text": text},
{"type": "image_url", "image_url": {"url": image_url}}
]
}
]
payload = {
"model": "gpt-5-chat-latest",
"messages": messages,
"temperature": 0, # Deterministik cevaplar için
"max_tokens": 500,
"stream": False,
"top_p": 0.1, # Daha tutarlı cevaplar için düşük değer
"frequency_penalty": 0.1, # Tekrarları azaltmak için
"presence_penalty": 0 # Yeni konulara açık olması için
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return {
"success": True,
"response": result['choices'][0]['message']['content'],
"model": result.get('model', 'unknown')
}
else:
return {
"success": False,
"error": response.text,
"status_code": response.status_code
}
except Exception as e:
return {"error": str(e), "type": type(e).__name__}
if __name__ == "__main__":
import uvicorn
print("🚀 Trek WhatsApp Bot başlatılıyor...")
uvicorn.run(app, host="0.0.0.0", port=7860)