File size: 7,067 Bytes
f3ff1c7 5bc456f 4e2317a f3ff1c7 cffbb17 cb25815 1d40ff6 f2f4fed cb25815 6ac6e92 1d40ff6 f2f4fed cea0931 f3ff1c7 330e3bd f3ff1c7 5f418f1 f3ff1c7 5f418f1 f3ff1c7 330e3bd f3ff1c7 8649c90 b360818 f3ff1c7 5f418f1 f3ff1c7 1cfbc4e f3ff1c7 176e140 f3ff1c7 45f78b6 f3ff1c7 1cfbc4e f3ff1c7 8e3359d f3ff1c7 3426d01 7e3b0c5 f3ff1c7 24073f0 f3ff1c7 50bcd40 f3ff1c7 50bcd40 f3ff1c7 1af76e3 9d49781 06f1994 a8e03f2 f3ff1c7 22b1470 b9c7cef 50bcd40 3593171 50bcd40 01cefec a583459 6df1c37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Huggingface provided GPT4 OpenAI API Key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
prompt = {"Sen bir Trek bisiklet asistanısın"}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
print(f"system message is ^^ {system_msg}")
if system_msg.strip() == '':
initial_message = [{"role": "user", "content": "Sen bir Trek bisiklet asistanısın"},]
multi_turn_message = [{"role": "system", "content": "Sen bir Trek bisiklet asistanısın"},]
else:
initial_message= [{"role": "system", "content": "Sen bir Trek bisiklet asistanısın"},
{"role": "user", "content": "Sen bir Trek bisiklet asistanısın"},]
multi_turn_message = [{"role": "system", "content": "Sen bir Trek bisiklet asistanısın"},]
if chat_counter == 0 :
payload = {
"model": "gpt-3.5-turbo",
"messages": initial_message ,
"temperature" : 0.1,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":2,
"frequency_penalty":2,
}
print(f"chat_counter - {chat_counter}")
else: #if chat_counter != 0 :
messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
for data in chatbot:
user = {}
user["role"] = "user"
user["content"] = data[0]
assistant = {}
assistant["role"] = "assistant"
assistant["content"] = data[1]
messages.append(user)
messages.append(assistant)
temp = {}
temp["role"] = "user"
temp["content"] = inputs
messages.append(temp)
#messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
"temperature" : 0.1,
"top_p": 1.0,
"n" : 1,
"stream": True,
"presence_penalty":2,
"frequency_penalty":2,}
chat_counter+=1
history.append(inputs)
print(f"Logging : payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
print(f"Logging : response code - {response}")
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter, response # resembles {chatbot: chat, state: history}
#Resetting to blank
def reset_textbox():
return gr.update(value='')
#to set a component as visible=False
def set_visible_false():
return gr.update(visible=False)
#to set a component as visible=True
def set_visible_true():
return gr.update(visible=False)
#title = """<h1 align="center">🔥GPT4 with ChatCompletions API +🚀Gradio-Streaming</h1>"""
#display message for themes feature
theme_addon_msg = """<center>🌟 Discover Gradio Themes with this Demo, featuring v3.22.0! Gradio v3.23.0 also enables seamless Theme sharing. You can develop or modify a theme, and send it to the hub using simple <code>theme.push_to_hub()</code>.
<br>🏆Participate in Gradio's Theme Building Hackathon to exhibit your creative flair and win fabulous rewards! Join here - <a href="https://huggingface.co/Gradio-Themes" target="_blank">Gradio-Themes-Party🎨</a> 🏆</center>
"""
#Using info to add additional information about System message in GPT4
system_msg_info = ""
#Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="green",
text_size=gr.themes.sizes.text_lg)
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
#gr.HTML(title)
#gr.HTML("""<h3 align="center">🔥This Huggingface Gradio Demo provides you full access to GPT4 API (4096 token limit). 🎉🥳🎉You don't need any OPENAI API key🙌</h1>""")
#gr.HTML(theme_addon_msg)
#gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Column(elem_id = "col_container"):
#GPT4 API Key is provided by Huggingface
with gr.Accordion("", open=False):
system_msg = gr.Textbox(info = system_msg_info, value="")
accordion_msg = gr.HTML(value="", visible=False)
chatbot = gr.Chatbot(label='GPT4', elem_id="chatbot")
inputs = gr.Textbox(placeholder= "Buraya yazın, yanıtlayalım.", show_label= False)
state = gr.State([])
'''with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button().style(full_width=True)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="Status code from OpenAI server", )'''
#top_p, temperature
with gr.Accordion("", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=False, visible=False)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=False, visible=False)
chat_counter = gr.Number(value=0, visible=False, precision=0)
#Event handling
inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],) #openai_api_key
#b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
#b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
demo.queue(max_size=20, concurrency_count=20).launch(debug=True) |