File size: 10,204 Bytes
c051efa
2142c80
 
f3ff1c7
2142c80
fce7101
 
e182566
b4553e5
 
e182566
b4553e5
 
 
 
 
 
 
 
7fcabe0
7acd937
8b7994d
2142c80
 
97be484
 
f3ff1c7
0e279cb
10b378e
2343f3f
 
 
 
 
0e279cb
 
 
 
 
 
 
 
 
9b197fd
cb8389b
 
 
9b197fd
cb8389b
7a7b7b1
e182566
9b197fd
 
 
 
 
e182566
 
 
 
 
f3ff1c7
2142c80
 
f3ff1c7
97be484
2343f3f
1d85bf4
0e279cb
1d85bf4
0b9cf76
0e279cb
0b9cf76
b07a923
 
 
2343f3f
7fcabe0
e781c31
9721f1e
0e279cb
0b9cf76
 
 
 
3432366
dd6c899
 
 
 
 
 
 
 
81d729c
2343f3f
e182566
97be484
81d729c
9b197fd
97be484
 
 
 
 
 
3432366
b4553e5
0b9cf76
97be484
 
 
7fcabe0
97be484
43296bd
 
 
5ede5a3
 
43296bd
5ede5a3
 
 
 
7fcabe0
5ede5a3
b4553e5
5ede5a3
 
 
 
 
 
 
 
d77b3f4
b4553e5
e182566
d77b3f4
 
 
 
 
 
e182566
 
 
 
 
d77b3f4
9b197fd
e182566
9b197fd
 
e182566
7fcabe0
852d7e0
7fbd340
852d7e0
 
 
7fcabe0
 
60b2cc4
 
852d7e0
 
60b2cc4
852d7e0
f3ff1c7
 
7a7b7b1
aa19c35
 
 
 
 
bf43636
aa19c35
 
 
cb8389b
aa19c35
 
 
 
 
 
 
 
 
 
 
 
97be484
0b9cf76
c905e92
75d80d2
 
 
852d7e0
75d80d2
852d7e0
75d80d2
 
 
 
 
 
852d7e0
0b9cf76
c905e92
 
 
0db0cec
75d80d2
97be484
0db0cec
e8299c3
97be484
75d80d2
e8299c3
d544b01
97be484
75d80d2
 
8a96746
 
97be484
 
d544b01
0b9cf76
 
75d80d2
 
 
 
3432366
7baf15a
75d80d2
b4553e5
 
 
3432366
2343f3f
 
 
 
 
75d80d2
d77b3f4
0b9cf76
e8299c3
75d80d2
 
 
 
 
7ce81f1
 
75d80d2
e9d7e5b
852d7e0
aca9f02
97be484
 
2343f3f
0b9cf76
97be484
0b9cf76
97be484
9b197fd
bf43636
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import gradio as gr
import os
import json
import requests
import xml.etree.ElementTree as ET
from huggingface_hub import HfApi, create_repo

# Dosya yolu: Kalıcı depolama için öncelik, yoksa geçici dizin
LOG_FILE = '/persistent-storage/chat_logs.txt'
persistent_dir = '/persistent-storage'

if not os.path.exists(persistent_dir):
    try:
        os.makedirs(persistent_dir, exist_ok=True)
        print(f"Kalıcı depolama dizini oluşturuldu: {persistent_dir}")
    except Exception as e:
        print(f"Kalıcı depolama dizini oluşturulamadı: {e}. Geçici dizine geri dönülüyor.")
        LOG_FILE = 'chat_logs.txt'

print(f"Dosya yolu: {os.path.abspath(LOG_FILE)}")

# API ayarları
API_URL = "https://api.openai.com/v1/chat/completions"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
    print("Hata: OPENAI_API_KEY çevre değişkeni ayarlanmamış!")

# Trek bisiklet ürünlerini çekme
url = 'https://www.trekbisiklet.com.tr/output/8582384479'
response = requests.get(url)
root = ET.fromstring(response.content)

products = []
for item in root.findall('item'):
    if item.find('isOptionOfAProduct').text == '1' and item.find('stockAmount').text > '0':
        name_words = item.find('rootlabel').text.lower().split()
        name = name_words[0]
        full_name = ' '.join(name_words)
        stockAmount = "stokta"
        price = item.find('priceWithTax').text
        item_info = (stockAmount, price)
        products.append((name, item_info, full_name))

# Ortam değişkeninde "hfapi" tanımlı; repo oluşturuluyor.
hfapi = os.getenv("hfapi")
if not hfapi:
    raise ValueError("hfapi ortam değişkeni ayarlanmamış!")
# Repo adı örneğin "BF" ise; kullanıcı adınız repo id'sinde eklenir (örneğin "SamiKoen/BF")
create_repo("BF", token=hfapi, repo_type="space", space_sdk="gradio", exist_ok=True)

def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=None, history=None):
    """
    Her Enter tuşuna basıldığında çalışır; 
    kullanıcı mesajı log dosyasına yazılır, bot yanıtı tamamlandığında log dosyası güncellenir
    ve sonrasında HF Hub'a yüklenir.
    """
    if chatbot is None:
        chatbot = []
    if history is None:
        history = []

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    print(f"System message: {system_msg}")
    
    multi_turn_message = [
        {"role": "system", "content": "Bir önceki sohbeti unut. Vereceğin ürün bilgisi, bu bilginin içinde yan yana yazmıyorsa veya arada başka bilgiler yazıyor ise, o bilgiyi vermeyeceksin çünkü o bilgi yanlıştır. ... (uzun metin)"}
    ]
    
    messages = multi_turn_message.copy()
    input_words = [str(word).lower() for word in inputs.split()]
    for product_info in products:
        if product_info[0] in input_words:
            new_msg = f"{product_info[2]} {product_info[1][0]} ve fiyatı EURO {product_info[1][1]}"
            print(new_msg)
            messages.append({"role": "system", "content": new_msg})
    
    for data in chatbot:
        messages.append({"role": data["role"], "content": data["content"]})
    
    messages.append({"role": "user", "content": inputs})
    
    payload = {
        "model": "gpt-4o",
        "messages": messages,
        "temperature": 0.7,
        "top_p": 0.9,
        "n": 1,
        "stream": True,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    
    chat_counter += 1
    history.append(inputs)
    print(f"Logging: Payload is - {payload}")
    
    # Kullanıcı mesajını log dosyasına yaz
    try:
        with open(LOG_FILE, 'a', encoding='utf-8') as f:
            f.write(f"User: {inputs}\n")
            print(f"Kullanıcı mesajı dosyaya yazıldı: {inputs}")
    except Exception as e:
        print(f"Dosya yazma hatası (Kullanıcı): {e}")
    
    chatbot.append({"role": "user", "content": inputs})
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    print(f"Logging: Response code - {response.status_code}")
    if response.status_code != 200:
        print(f"API hatası: {response.text}")
        return chatbot, history, chat_counter
    
    partial_words = ""
    counter = 0
    for chunk in response.iter_lines():
        counter += 1
        if not chunk:
            continue
        chunk_str = chunk.decode('utf-8')
        print(f"Chunk {counter}: {chunk_str}")
        if chunk_str.startswith("data: ") and chunk_str != "data: [DONE]":
            try:
                chunk_data = json.loads(chunk_str[6:])
                delta = chunk_data['choices'][0]['delta']
                if 'content' in delta and delta['content']:
                    content = delta['content']
                    partial_words += content
                    print(f"İçerik eklendi: {content}")
                    print(f"Güncel partial_words: {partial_words}")
            except json.JSONDecodeError as e:
                print(f"JSON parse hatası: {e} - Chunk: {chunk_str}")
        elif chunk_str == "data: [DONE]":
            print("Akış tamamlandı: [DONE] alındı")
            if partial_words:
                history.append(partial_words)
                chatbot.append({"role": "assistant", "content": partial_words})
                try:
                    with open(LOG_FILE, 'a', encoding='utf-8') as f:
                        f.write(f"Bot: {partial_words}\n")
                        print(f"Bot yanıtı dosyaya yazıldı: {partial_words}")
                except Exception as e:
                    print(f"Dosya yazma hatası (Bot): {e}")
        chat = chatbot.copy()
        if partial_words and chat and chat[-1]["role"] == "user":
            chat.append({"role": "assistant", "content": partial_words})
        elif partial_words and chat and chat[-1]["role"] == "assistant":
            chat[-1] = {"role": "assistant", "content": partial_words}
        yield chat, history, chat_counter

    print(f"Son chatbot durumu: {chatbot}")
    # Her enter'dan sonra log dosyası otomatik olarak HF Hub'a yüklensin:
    upload_logs_to_hf("SamiKoen/BF", hfapi)
    return chatbot, history, chat_counter

def save_chat(chatbot):
    file_path = os.path.abspath(LOG_FILE)
    try:
        with open(LOG_FILE, 'a', encoding='utf-8') as f:
            f.write("\n--- Kayıt Edilen Sohbet ---\n")
            for msg in chatbot:
                f.write(f"{msg['role'].capitalize()}: {msg['content']}\n")
            print(f"Sohbet dosyaya kaydedildi: {file_path}")
        return f"Sohbet başarıyla kaydedildi!\nDosya: {file_path}"
    except Exception as e:
        print(f"Kayıt hatası: {e}")
        return f"Kayıt hatası: {e}\nDosya: {file_path}"

def reset_textbox():
    return gr.update(value='')

def upload_logs_to_hf(repo_id: str, hf_token: str, local_log_file: str = "chat_logs.txt"):
    """
    Log dosyasını Hugging Face Hub repository'sine yükler.
    
    Args:
        repo_id (str): Repository kimliği (örn. "SamiKoen/BF").
        hf_token (str): Hugging Face API token'ınız.
        local_log_file (str): Yüklenecek log dosyasının yolu.
    """
    api = HfApi(token=hf_token)
    try:
        api.upload_file(
            path_or_fileobj=local_log_file,
            path_in_repo=local_log_file,
            repo_id=repo_id,
            repo_type="space",
            commit_message="Log dosyası güncellendi"
        )
        print(f"Log dosyası başarıyla yüklendi: {local_log_file}")
    except Exception as e:
        print(f"Log dosyası yüklenirken hata oluştu: {e}")

# Gradio arayüzü
demo_css = """
#send_button, #save_button {
    background-color: #0b93f6;
    border: none;
    color: white;
    font-size: 16px;
    border-radius: 10%;
    width: 100px !important;
    height: 37px !important;
    display: inline-flex;
    align-items: center;
    justify-content: center;
    cursor: pointer;
    transition: background-color 0.3s;
    margin: 5px;
}
#send_button:hover, #save_button:hover {
    background-color: #0077c0;
}
.fixed_button_container {
    padding: 0px;
    margin: 0px 0 0 0px;
}
#custom_row {
    width: 150% !important;
    flex-wrap: nowrap !important;
}
@media only screen and (max-width: 1000px) {
    .custom_row {
        flex-wrap: nowrap !important;
    }
}
#chatbot {
    height: 100vh;
    overflow-y: auto;
}
"""

theme = gr.themes.Base(
    neutral_hue="blue",
    text_size="sm",
    spacing_size="sm",
)

with gr.Blocks(css=demo_css, theme=theme) as demo:
    if not os.path.exists(LOG_FILE):
        with open(LOG_FILE, 'w', encoding='utf-8') as f:
            f.write("--- Yeni Sohbet ---\n")
    
    with gr.Column(elem_id="col_container"):
        with gr.Accordion("", open=False, visible=False):
            system_msg = gr.Textbox(value="")
            new_msg = gr.Textbox(value="")
            accordion_msg = gr.HTML(value="", visible=False)
        
        chatbot = gr.Chatbot(label='Trek Asistanı', elem_id="chatbot", type="messages")
        
        with gr.Row(elem_id="custom_row"):
            inputs = gr.Textbox(
                placeholder="Buraya yazın",
                show_label=False,
                container=False,
            )
            with gr.Column(elem_classes="fixed_button_container"):
                send_button = gr.Button(value="Gönder", elem_id="send_button")
        
        state = gr.State([])
        
        with gr.Accordion("", open=False, visible=False):
            top_p = gr.Slider(minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=False, visible=False)
            temperature = gr.Slider(minimum=0, maximum=5.0, value=0.1, step=0.1, interactive=False, visible=False)
            chat_counter = gr.Number(value=0, visible=False, precision=0)
        
        inputs.submit(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
        inputs.submit(reset_textbox, [], [inputs])
        send_button.click(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])

demo.queue(max_size=10).launch(debug=True)