File size: 10,204 Bytes
c051efa 2142c80 f3ff1c7 2142c80 fce7101 e182566 b4553e5 e182566 b4553e5 7fcabe0 7acd937 8b7994d 2142c80 97be484 f3ff1c7 0e279cb 10b378e 2343f3f 0e279cb 9b197fd cb8389b 9b197fd cb8389b 7a7b7b1 e182566 9b197fd e182566 f3ff1c7 2142c80 f3ff1c7 97be484 2343f3f 1d85bf4 0e279cb 1d85bf4 0b9cf76 0e279cb 0b9cf76 b07a923 2343f3f 7fcabe0 e781c31 9721f1e 0e279cb 0b9cf76 3432366 dd6c899 81d729c 2343f3f e182566 97be484 81d729c 9b197fd 97be484 3432366 b4553e5 0b9cf76 97be484 7fcabe0 97be484 43296bd 5ede5a3 43296bd 5ede5a3 7fcabe0 5ede5a3 b4553e5 5ede5a3 d77b3f4 b4553e5 e182566 d77b3f4 e182566 d77b3f4 9b197fd e182566 9b197fd e182566 7fcabe0 852d7e0 7fbd340 852d7e0 7fcabe0 60b2cc4 852d7e0 60b2cc4 852d7e0 f3ff1c7 7a7b7b1 aa19c35 bf43636 aa19c35 cb8389b aa19c35 97be484 0b9cf76 c905e92 75d80d2 852d7e0 75d80d2 852d7e0 75d80d2 852d7e0 0b9cf76 c905e92 0db0cec 75d80d2 97be484 0db0cec e8299c3 97be484 75d80d2 e8299c3 d544b01 97be484 75d80d2 8a96746 97be484 d544b01 0b9cf76 75d80d2 3432366 7baf15a 75d80d2 b4553e5 3432366 2343f3f 75d80d2 d77b3f4 0b9cf76 e8299c3 75d80d2 7ce81f1 75d80d2 e9d7e5b 852d7e0 aca9f02 97be484 2343f3f 0b9cf76 97be484 0b9cf76 97be484 9b197fd bf43636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import os
import json
import requests
import xml.etree.ElementTree as ET
from huggingface_hub import HfApi, create_repo
# Dosya yolu: Kalıcı depolama için öncelik, yoksa geçici dizin
LOG_FILE = '/persistent-storage/chat_logs.txt'
persistent_dir = '/persistent-storage'
if not os.path.exists(persistent_dir):
try:
os.makedirs(persistent_dir, exist_ok=True)
print(f"Kalıcı depolama dizini oluşturuldu: {persistent_dir}")
except Exception as e:
print(f"Kalıcı depolama dizini oluşturulamadı: {e}. Geçici dizine geri dönülüyor.")
LOG_FILE = 'chat_logs.txt'
print(f"Dosya yolu: {os.path.abspath(LOG_FILE)}")
# API ayarları
API_URL = "https://api.openai.com/v1/chat/completions"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
print("Hata: OPENAI_API_KEY çevre değişkeni ayarlanmamış!")
# Trek bisiklet ürünlerini çekme
url = 'https://www.trekbisiklet.com.tr/output/8582384479'
response = requests.get(url)
root = ET.fromstring(response.content)
products = []
for item in root.findall('item'):
if item.find('isOptionOfAProduct').text == '1' and item.find('stockAmount').text > '0':
name_words = item.find('rootlabel').text.lower().split()
name = name_words[0]
full_name = ' '.join(name_words)
stockAmount = "stokta"
price = item.find('priceWithTax').text
item_info = (stockAmount, price)
products.append((name, item_info, full_name))
# Ortam değişkeninde "hfapi" tanımlı; repo oluşturuluyor.
hfapi = os.getenv("hfapi")
if not hfapi:
raise ValueError("hfapi ortam değişkeni ayarlanmamış!")
# Repo adı örneğin "BF" ise; kullanıcı adınız repo id'sinde eklenir (örneğin "SamiKoen/BF")
create_repo("BF", token=hfapi, repo_type="space", space_sdk="gradio", exist_ok=True)
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=None, history=None):
"""
Her Enter tuşuna basıldığında çalışır;
kullanıcı mesajı log dosyasına yazılır, bot yanıtı tamamlandığında log dosyası güncellenir
ve sonrasında HF Hub'a yüklenir.
"""
if chatbot is None:
chatbot = []
if history is None:
history = []
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
print(f"System message: {system_msg}")
multi_turn_message = [
{"role": "system", "content": "Bir önceki sohbeti unut. Vereceğin ürün bilgisi, bu bilginin içinde yan yana yazmıyorsa veya arada başka bilgiler yazıyor ise, o bilgiyi vermeyeceksin çünkü o bilgi yanlıştır. ... (uzun metin)"}
]
messages = multi_turn_message.copy()
input_words = [str(word).lower() for word in inputs.split()]
for product_info in products:
if product_info[0] in input_words:
new_msg = f"{product_info[2]} {product_info[1][0]} ve fiyatı EURO {product_info[1][1]}"
print(new_msg)
messages.append({"role": "system", "content": new_msg})
for data in chatbot:
messages.append({"role": data["role"], "content": data["content"]})
messages.append({"role": "user", "content": inputs})
payload = {
"model": "gpt-4o",
"messages": messages,
"temperature": 0.7,
"top_p": 0.9,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
}
chat_counter += 1
history.append(inputs)
print(f"Logging: Payload is - {payload}")
# Kullanıcı mesajını log dosyasına yaz
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write(f"User: {inputs}\n")
print(f"Kullanıcı mesajı dosyaya yazıldı: {inputs}")
except Exception as e:
print(f"Dosya yazma hatası (Kullanıcı): {e}")
chatbot.append({"role": "user", "content": inputs})
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
print(f"Logging: Response code - {response.status_code}")
if response.status_code != 200:
print(f"API hatası: {response.text}")
return chatbot, history, chat_counter
partial_words = ""
counter = 0
for chunk in response.iter_lines():
counter += 1
if not chunk:
continue
chunk_str = chunk.decode('utf-8')
print(f"Chunk {counter}: {chunk_str}")
if chunk_str.startswith("data: ") and chunk_str != "data: [DONE]":
try:
chunk_data = json.loads(chunk_str[6:])
delta = chunk_data['choices'][0]['delta']
if 'content' in delta and delta['content']:
content = delta['content']
partial_words += content
print(f"İçerik eklendi: {content}")
print(f"Güncel partial_words: {partial_words}")
except json.JSONDecodeError as e:
print(f"JSON parse hatası: {e} - Chunk: {chunk_str}")
elif chunk_str == "data: [DONE]":
print("Akış tamamlandı: [DONE] alındı")
if partial_words:
history.append(partial_words)
chatbot.append({"role": "assistant", "content": partial_words})
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write(f"Bot: {partial_words}\n")
print(f"Bot yanıtı dosyaya yazıldı: {partial_words}")
except Exception as e:
print(f"Dosya yazma hatası (Bot): {e}")
chat = chatbot.copy()
if partial_words and chat and chat[-1]["role"] == "user":
chat.append({"role": "assistant", "content": partial_words})
elif partial_words and chat and chat[-1]["role"] == "assistant":
chat[-1] = {"role": "assistant", "content": partial_words}
yield chat, history, chat_counter
print(f"Son chatbot durumu: {chatbot}")
# Her enter'dan sonra log dosyası otomatik olarak HF Hub'a yüklensin:
upload_logs_to_hf("SamiKoen/BF", hfapi)
return chatbot, history, chat_counter
def save_chat(chatbot):
file_path = os.path.abspath(LOG_FILE)
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write("\n--- Kayıt Edilen Sohbet ---\n")
for msg in chatbot:
f.write(f"{msg['role'].capitalize()}: {msg['content']}\n")
print(f"Sohbet dosyaya kaydedildi: {file_path}")
return f"Sohbet başarıyla kaydedildi!\nDosya: {file_path}"
except Exception as e:
print(f"Kayıt hatası: {e}")
return f"Kayıt hatası: {e}\nDosya: {file_path}"
def reset_textbox():
return gr.update(value='')
def upload_logs_to_hf(repo_id: str, hf_token: str, local_log_file: str = "chat_logs.txt"):
"""
Log dosyasını Hugging Face Hub repository'sine yükler.
Args:
repo_id (str): Repository kimliği (örn. "SamiKoen/BF").
hf_token (str): Hugging Face API token'ınız.
local_log_file (str): Yüklenecek log dosyasının yolu.
"""
api = HfApi(token=hf_token)
try:
api.upload_file(
path_or_fileobj=local_log_file,
path_in_repo=local_log_file,
repo_id=repo_id,
repo_type="space",
commit_message="Log dosyası güncellendi"
)
print(f"Log dosyası başarıyla yüklendi: {local_log_file}")
except Exception as e:
print(f"Log dosyası yüklenirken hata oluştu: {e}")
# Gradio arayüzü
demo_css = """
#send_button, #save_button {
background-color: #0b93f6;
border: none;
color: white;
font-size: 16px;
border-radius: 10%;
width: 100px !important;
height: 37px !important;
display: inline-flex;
align-items: center;
justify-content: center;
cursor: pointer;
transition: background-color 0.3s;
margin: 5px;
}
#send_button:hover, #save_button:hover {
background-color: #0077c0;
}
.fixed_button_container {
padding: 0px;
margin: 0px 0 0 0px;
}
#custom_row {
width: 150% !important;
flex-wrap: nowrap !important;
}
@media only screen and (max-width: 1000px) {
.custom_row {
flex-wrap: nowrap !important;
}
}
#chatbot {
height: 100vh;
overflow-y: auto;
}
"""
theme = gr.themes.Base(
neutral_hue="blue",
text_size="sm",
spacing_size="sm",
)
with gr.Blocks(css=demo_css, theme=theme) as demo:
if not os.path.exists(LOG_FILE):
with open(LOG_FILE, 'w', encoding='utf-8') as f:
f.write("--- Yeni Sohbet ---\n")
with gr.Column(elem_id="col_container"):
with gr.Accordion("", open=False, visible=False):
system_msg = gr.Textbox(value="")
new_msg = gr.Textbox(value="")
accordion_msg = gr.HTML(value="", visible=False)
chatbot = gr.Chatbot(label='Trek Asistanı', elem_id="chatbot", type="messages")
with gr.Row(elem_id="custom_row"):
inputs = gr.Textbox(
placeholder="Buraya yazın",
show_label=False,
container=False,
)
with gr.Column(elem_classes="fixed_button_container"):
send_button = gr.Button(value="Gönder", elem_id="send_button")
state = gr.State([])
with gr.Accordion("", open=False, visible=False):
top_p = gr.Slider(minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=False, visible=False)
temperature = gr.Slider(minimum=0, maximum=5.0, value=0.1, step=0.1, interactive=False, visible=False)
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
inputs.submit(reset_textbox, [], [inputs])
send_button.click(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
demo.queue(max_size=10).launch(debug=True)
|