Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def chat(user_input, history=[]):
|
2 |
global chat_history_ids
|
3 |
|
4 |
-
#
|
5 |
new_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
6 |
|
7 |
-
# Append to chat history
|
8 |
bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_history_ids is not None else new_input_ids
|
9 |
|
10 |
-
# Generate response
|
11 |
chat_history_ids = model.generate(
|
12 |
bot_input_ids,
|
13 |
-
max_length=
|
14 |
pad_token_id=tokenizer.eos_token_id,
|
15 |
do_sample=True,
|
16 |
top_k=50,
|
17 |
top_p=0.95,
|
18 |
-
temperature=0.7
|
19 |
-
num_return_sequences=1
|
20 |
)
|
21 |
|
22 |
-
# Decode
|
23 |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
24 |
|
25 |
-
#
|
26 |
-
if len(response) > 1000:
|
27 |
-
response = response[:1000] + "..."
|
28 |
-
|
29 |
history.append((user_input, response))
|
30 |
return history, history
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load pre-trained model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
8 |
+
|
9 |
+
# Global chat history
|
10 |
+
chat_history_ids = None
|
11 |
+
|
12 |
def chat(user_input, history=[]):
|
13 |
global chat_history_ids
|
14 |
|
15 |
+
# Tokenize user input
|
16 |
new_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
17 |
|
18 |
+
# Append to chat history
|
19 |
bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_history_ids is not None else new_input_ids
|
20 |
|
21 |
+
# Generate response with controlled output
|
22 |
chat_history_ids = model.generate(
|
23 |
bot_input_ids,
|
24 |
+
max_length=500, # shorter for safety
|
25 |
pad_token_id=tokenizer.eos_token_id,
|
26 |
do_sample=True,
|
27 |
top_k=50,
|
28 |
top_p=0.95,
|
29 |
+
temperature=0.7
|
|
|
30 |
)
|
31 |
|
32 |
+
# Decode model output
|
33 |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
34 |
|
35 |
+
# Append to chat history
|
|
|
|
|
|
|
36 |
history.append((user_input, response))
|
37 |
return history, history
|
38 |
|
39 |
+
# Create a Gradio ChatInterface
|
40 |
+
chatbot_ui = gr.ChatInterface(
|
41 |
+
fn=chat,
|
42 |
+
title="Teen Mental Health Chatbot 🤖💬",
|
43 |
+
description="Talk to a supportive AI. Not a replacement for professional help.",
|
44 |
+
)
|
45 |
|
46 |
+
# Launch the app (required!)
|
47 |
+
if __name__ == "__main__":
|
48 |
+
chatbot_ui.launch()
|