File size: 670 Bytes
2cfa511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

def load_model():
    model_name = "Salesforce/codet5-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    model.eval()

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    return tokenizer, model, device

def generate_explanation(prompt, tokenizer, model, device):
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(device)
    output = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
    return tokenizer.decode(output[0], skip_special_tokens=True)