Spaces:
Sleeping
Sleeping
Upload model_utils.py
Browse files- model/model_utils.py +4 -3
model/model_utils.py
CHANGED
@@ -2,7 +2,7 @@ from transformers import AutoTokenizer, T5ForConditionalGeneration
|
|
2 |
import torch
|
3 |
|
4 |
def load_model():
|
5 |
-
model_name = "Salesforce/codet5-
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
model.eval()
|
@@ -11,7 +11,8 @@ def load_model():
|
|
11 |
|
12 |
def generate_explanation(code, tokenizer, model):
|
13 |
device = model.device
|
14 |
-
|
|
|
15 |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True).to(device)
|
16 |
-
output = model.generate(input_ids, max_new_tokens=
|
17 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
2 |
import torch
|
3 |
|
4 |
def load_model():
|
5 |
+
model_name = "Salesforce/codet5-base-multi-sum"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
model.eval()
|
|
|
11 |
|
12 |
def generate_explanation(code, tokenizer, model):
|
13 |
device = model.device
|
14 |
+
# Better prompt engineering
|
15 |
+
input_text = f"summarize: This Python function does the following: {code}"
|
16 |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True).to(device)
|
17 |
+
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
18 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|