Spaces:
Sleeping
Sleeping
Upload model_utils.py
Browse files- model/model_utils.py +11 -13
model/model_utils.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
-
from transformers import AutoTokenizer,
|
2 |
import torch
|
3 |
|
4 |
def load_model():
|
5 |
-
model_name = "
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model =
|
8 |
model.eval()
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
model.
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
with torch.no_grad():
|
17 |
-
logits = model(**inputs).logits
|
18 |
-
predicted_class_id = logits.argmax().item()
|
19 |
-
return f"This code is classified as category ID: {predicted_class_id} (label may vary based on fine-tuning objective)"
|
|
|
1 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
2 |
import torch
|
3 |
|
4 |
def load_model():
|
5 |
+
model_name = "Salesforce/codet5-small"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
model.eval()
|
9 |
+
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
10 |
+
return tokenizer, model
|
11 |
|
12 |
+
def generate_explanation(code, tokenizer, model):
|
13 |
+
device = model.device
|
14 |
+
input_text = "summarize: " + code
|
15 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True).to(device)
|
16 |
+
output = model.generate(input_ids, max_new_tokens=150, early_stopping=True)
|
17 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|