from transformers import AutoTokenizer, AutoModelForCausalLM import torch def load_model(): model_name = "Salesforce/codet5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return tokenizer, model, device def generate_explanation(prompt, tokenizer, model, device): inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(device) output = model.generate(**inputs, max_new_tokens=256, temperature=0.7) return tokenizer.decode(output[0], skip_special_tokens=True)