from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch def load_model(): model_name = "mrm8488/codebert-base-finetuned-stackoverflow" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return tokenizer, model, device def generate_explanation(code, tokenizer, model, device): inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() return f"This code is classified as category ID: {predicted_class_id} (label may vary based on fine-tuning objective)"