Autoweight / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
adab0b4 verified
raw
history blame
1.98 kB
import numpy as np
import re
import cv2
from PIL import Image
import easyocr
import os
# βœ… Initialize OCR reader only once
reader = easyocr.Reader(['en'], gpu=False)
def preprocess_image(image):
"""
Preprocess the image to improve OCR detection.
Converts to grayscale and applies adaptive threshold.
"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Apply adaptive threshold to isolate digits better
thresh = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV,
11, 10
)
return thresh
def extract_weight_from_image(pil_image):
try:
# βœ… Step 1: Convert to OpenCV format
image = np.array(pil_image.convert("RGB"))
# βœ… Step 2: Preprocess image
processed = preprocess_image(image)
# βœ… Step 3: Optional - Save debug image
debug_path = "debug_processed_image.png"
Image.fromarray(processed).save(debug_path)
print(f"[DEBUG] Saved preprocessed image to {debug_path}")
# βœ… Step 4: Run EasyOCR
result = reader.readtext(processed)
print("πŸ” OCR Results:")
for r in result:
print(f" β€’ Text: '{r[1]}' | Confidence: {r[2]*100:.2f}%")
# βœ… Step 5: Look for a decimal number like 53.25
weight = None
confidence = 0.0
for detection in result:
text = detection[1].replace(",", ".") # Handle comma decimal (if any)
conf = detection[2]
# Look for numbers like 53.25 or 100
match = re.search(r"\b\d{1,3}(\.\d{1,2})?\b", text)
if match:
weight = match.group()
confidence = conf
break
if weight:
return weight, round(confidence * 100, 2)
else:
return "No weight detected", 0.0
except Exception as e:
print(f"❌ OCR Error: {e}")
return f"Error: {str(e)}", 0.0