Spaces:
Build error
Build error
Update ocr_engine.py
Browse files- ocr_engine.py +21 -23
ocr_engine.py
CHANGED
@@ -5,37 +5,35 @@ from PIL import Image
|
|
5 |
|
6 |
def extract_weight_from_image(pil_img):
|
7 |
try:
|
8 |
-
# Convert PIL
|
9 |
-
img = pil_img.convert("
|
10 |
-
|
11 |
-
img_cv = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 15, 10
|
19 |
-
)
|
20 |
-
|
21 |
-
# Resize to enhance small text
|
22 |
-
resized = cv2.resize(processed, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
weight = ''.join(
|
34 |
-
weight = weight.strip()
|
35 |
|
36 |
confidence = 95 if weight else 0
|
37 |
-
return weight, confidence
|
38 |
|
39 |
except Exception as e:
|
40 |
-
print("β OCR
|
41 |
return "", 0
|
|
|
5 |
|
6 |
def extract_weight_from_image(pil_img):
|
7 |
try:
|
8 |
+
# Step 1: Convert PIL to OpenCV
|
9 |
+
img = pil_img.convert("L") # grayscale
|
10 |
+
img = np.array(img)
|
|
|
11 |
|
12 |
+
# Step 2: Resize image for better OCR accuracy
|
13 |
+
img = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
|
14 |
|
15 |
+
# Step 3: Apply Gaussian Blur to remove noise
|
16 |
+
blur = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Step 4: Apply Adaptive Thresholding
|
19 |
+
thresh = cv2.adaptiveThreshold(
|
20 |
+
blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
21 |
+
cv2.THRESH_BINARY_INV, 11, 2
|
22 |
+
)
|
23 |
|
24 |
+
# Step 5: OCR Config - digits only
|
25 |
+
config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
|
26 |
|
27 |
+
# Step 6: Run OCR
|
28 |
+
text = pytesseract.image_to_string(thresh, config=config)
|
29 |
+
print("π OCR RAW OUTPUT:", repr(text)) # view this in Hugging Face logs
|
30 |
|
31 |
+
# Step 7: Extract numbers
|
32 |
+
weight = ''.join(filter(lambda c: c in '0123456789.', text))
|
|
|
33 |
|
34 |
confidence = 95 if weight else 0
|
35 |
+
return weight.strip(), confidence
|
36 |
|
37 |
except Exception as e:
|
38 |
+
print("β OCR Exception:", str(e))
|
39 |
return "", 0
|