Spaces:
Build error
Build error
import streamlit as st | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import numpy as np | |
# Load your pre-trained model | |
model = torch.load('model/your_model_file.pt') | |
model.eval() | |
# Define image transformations | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
st.title("VIEP: Utility Pole Fault Detection") | |
uploaded_file = st.file_uploader("Upload an image of a utility pole", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert('RGB') | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
# Preprocess the image | |
input_tensor = transform(image).unsqueeze(0) | |
# Perform inference | |
with torch.no_grad(): | |
output = model(input_tensor) | |
_, predicted = torch.max(output, 1) | |
# Map the prediction to class names | |
classes = ['No Fault', 'Fault Detected'] | |
st.write(f"Prediction: {classes[predicted.item()]}") | |