Spaces:
Sleeping
Sleeping
File size: 951 Bytes
ffdd09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import numpy as np
import cv2
try:
import mediapipe as mp
_HAS_MP = True
except Exception:
_HAS_MP = False
def segment_image(img_np):
"""Returns binary mask for hair/head."""
h, w = img_np.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
center = (w // 2, int(h * 0.38))
axes = (int(w * 0.28), int(h * 0.33))
cv2.ellipse(mask, center, axes, 0, 0, 360, 255, -1)
return mask
def estimate_landmarks(img_np):
if not _HAS_MP:
return None
mp_face = mp.solutions.face_mesh
with mp_face.FaceMesh(static_image_mode=True, max_num_faces=1) as fm:
results = fm.process(cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
lm = results.multi_face_landmarks[0]
xs = [p.x for p in lm.landmark[:10]]
ys = [p.y for p in lm.landmark[:10]]
return {"forehead_anchor": (float(np.mean(xs)), float(np.mean(ys)))}
|