import cv2 import numpy as np def _read_png_rgba(path): png = cv2.imread(path, cv2.IMREAD_UNCHANGED) if png is None or png.shape[2] != 4: raise ValueError("Hairstyle PNG must be RGBA with transparency.") return png def auto_align(png_rgba, mask, landmarks=None): mh, mw = mask.shape[:2] ys, xs = np.where(mask > 0) if len(xs) == 0 or len(ys) == 0: return cv2.resize(png_rgba, (mw, mh)) x0, x1 = xs.min(), xs.max() y0, y1 = ys.min(), ys.max() tw, th = int((x1 - x0) * 1.1), int((y1 - y0) * 0.7) tw = max(1, min(tw, mw)) th = max(1, min(th, mh)) aligned = cv2.resize(png_rgba, (tw, th)) canvas = np.zeros((mh, mw, 4), dtype=np.uint8) y = max(0, y0 - int(0.25 * th)) x = max(0, x0 - int(0.05 * tw)) y2, x2 = min(mh, y + th), min(mw, x + tw) canvas[y:y2, x:x2] = aligned[:(y2 - y), :(x2 - x)] return canvas def _alpha_blend(base_bgr, overlay_rgba): bgr = base_bgr.copy() alpha = overlay_rgba[:, :, 3:4] / 255.0 rgb = overlay_rgba[:, :, :3] return (alpha * rgb + (1 - alpha) * bgr).astype(np.uint8) def apply_hairstyle(img_bgr, style_path, mask, landmarks=None): png = _read_png_rgba(style_path) aligned = auto_align(png, mask, landmarks) return _alpha_blend(img_bgr, aligned)