Spaces:
Runtime error
Runtime error
Create utils/detector.py
Browse files- utils/detector.py +29 -0
utils/detector.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 7 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 8 |
+
|
| 9 |
+
def detect_faults(image):
|
| 10 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 11 |
+
outputs = model(**inputs)
|
| 12 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 13 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 14 |
+
|
| 15 |
+
intrusion_detected = any(label == 1 for label in results["labels"].tolist())
|
| 16 |
+
|
| 17 |
+
# Simulated thermal detection (average red channel > 200 = overheat)
|
| 18 |
+
red_mean = np.array(image)[:, :, 0].mean()
|
| 19 |
+
overheating = red_mean > 200
|
| 20 |
+
|
| 21 |
+
# Simulated shade (brightness < 100 on average = dusty/shaded)
|
| 22 |
+
brightness = np.array(image).mean()
|
| 23 |
+
dusty = brightness < 100
|
| 24 |
+
|
| 25 |
+
return {
|
| 26 |
+
"Intrusion Detected": intrusion_detected,
|
| 27 |
+
"Overheating Panel": overheating,
|
| 28 |
+
"Dust/Shade Fault": dusty
|
| 29 |
+
}
|