File size: 8,802 Bytes
f0cc009
 
 
 
 
89c94bf
f0cc009
 
 
 
 
dd43308
 
 
f8df328
dd43308
f8df328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd43308
f8df328
f0cc009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8df328
f0cc009
f8df328
f0cc009
f8df328
 
f0cc009
 
f8df328
f0cc009
 
 
 
 
 
 
89c94bf
f0cc009
 
 
d183566
f0cc009
 
 
 
 
 
 
 
89c94bf
 
 
 
 
f0cc009
 
 
 
89c94bf
f0cc009
89c94bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0cc009
89c94bf
 
 
f0cc009
 
89c94bf
f8df328
d183566
 
 
 
 
 
 
 
f8df328
 
 
f0cc009
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import streamlit as st
import base64
from huggingface_hub import InferenceClient
import os

# Initialize Hugging Face Inference client using token from environment variables
client = InferenceClient(api_key=os.getenv("HF_API_TOKEN_DISH"))
client1 = InferenceClient(api_key=os.getenv("HF_API_TOKEN_DIET"))

# 1. Function to identify dish from image
def identify_dish(image_bytes):
    try:
        encoded_image = base64.b64encode(image_bytes).decode("utf-8")
        dish_name = ""
        for message in client.chat_completion(
            model="meta-llama/Llama-3.2-11B-Vision-Instruct",
            messages=[
                {
                    "role": "You are a highly specialized food identification AI with extensive knowledge of global cuisines. Your sole task is to accurately identify dishes from images. Adhere strictly to these guidelines:\n1. Analyze the image thoroughly, focusing on ingredients, presentation, and cultural context.\n2. Provide ONLY the name of the main dish or dishes visible. Do not list individual ingredients or components.\n3. Use the most specific and widely recognized name for the dish.\n4. If multiple distinct dishes are present, list them separated by commas.\n5. If you cannot identify a dish with high confidence (>90%), respond with 'Unidentified dish'.\n6. Do not provide any explanations, descriptions, or additional commentary.\n7. Respond in a concise, list-like format.\nYour response should contain nothing but the dish name(s) or 'Unidentified dish'.",
                    "content": [
                        {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}},
                        {"type": "text", "text": "Identify the dishes in the image and return only the names of the dishes."},
                    ],
                }
            ],
            max_tokens=70,
            stream=True,
        ):
            if message.choices[0].delta.content:
                dish_name += message.choices[0].delta.content

        return dish_name.strip()
    except Exception as e:
        return f"Error: {str(e)}"

# 2. Function to get user inputs and calculate daily caloric needs
def calculate_metrics(age, gender, height_cm, weight_kg, weight_goal, activity_level, time_frame_months):
    bmi = weight_kg / ((height_cm / 100) ** 2)

    if gender == "male":
        bmr = 10 * weight_kg + 6.25 * height_cm - 5 * age + 5
    else:
        bmr = 10 * weight_kg + 6.25 * height_cm - 5 * age - 161

    activity_multipliers = {
        "sedentary": 1.2,
        "light": 1.375,
        "moderate": 1.55,
        "active": 1.725,
        "very active": 1.9
    }
    tdee = bmr * activity_multipliers[activity_level]

    if gender == "male":
        ibw = 50 + (0.91 * (height_cm - 152.4))
    else:
        ibw = 45.5 + (0.91 * (height_cm - 152.4))

    if weight_goal == "loss":
        daily_caloric_needs = tdee - 500
    elif weight_goal == "gain":
        daily_caloric_needs = tdee + 500
    else:
        daily_caloric_needs = tdee

    protein_calories = daily_caloric_needs * 0.2
    fat_calories = daily_caloric_needs * 0.25
    carbohydrate_calories = daily_caloric_needs * 0.55

    return {
        "BMI": bmi,
        "BMR": bmr,
        "TDEE": tdee,
        "IBW": ibw,
        "Daily Caloric Needs": daily_caloric_needs,
        "Protein Calories": protein_calories,
        "Fat Calories": fat_calories,
        "Carbohydrate Calories": carbohydrate_calories
    }

# 3. Function to generate diet plan
def generate_diet_plan(dish_name, calorie_intake_per_day, goal):
    user_input = f"""
    You are a certified Dietitian with 20 years of experience. Based on the following input, create an Indian diet plan that fits within the calculated calorie intake and assesses if the given dish is suitable for the user's goal.

    Input:
    - Dish Name: {dish_name}
    - Caloric Intake per Day: {calorie_intake_per_day} calories
    - Goal: {goal} (e.g., weight loss, weight gain)

    Provide the response in the following format:
    1. Dish assessment (e.g., "The dish {dish_name} is suitable for your goal" or "The dish {dish_name} is not suitable for your goal, as it is too high in calories for weight goal").
    2. Suggest an Indian diet plan that stays near to the {calorie_intake_per_day}. For each meal (morning, lunch, evening), list the dish name, calorie count, and ingredients required to make it.And Make it with in 700 Tokens.
    """
    response = client1.chat_completion(
        model="meta-llama/Meta-Llama-3-8B-Instruct",
        messages=[{"role": "You are a certified Dietitian with 20 years of Experience", "content": user_input}],
        max_tokens=700
    )

    return response.choices[0].message.content

# Streamlit App Title
st.title("AI Diet Planner")

# Sidebar navigation to switch between the app and the user guide
menu = st.sidebar.selectbox("Menu", ["App", "User Guide"])

# If the user selects the app, show the existing app
if menu == "App":
    # Sidebar for user input
    st.sidebar.title("User Input")
    image_file = st.sidebar.file_uploader("Upload an image of the dish", type=["jpeg", "png", "jpg", "gif"])
    age = st.sidebar.number_input("Enter your age", min_value=18)
    gender = st.sidebar.selectbox("Select your gender", ["male", "female"])
    height_cm = st.sidebar.number_input("Enter your height (cm)", min_value=150.0)
    weight_kg = st.sidebar.number_input("Enter your weight (kg)", min_value=50.0)
    weight_goal = st.sidebar.selectbox("Weight goal", ["loss", "gain", "maintain"])
    activity_level = st.sidebar.selectbox("Activity level", ["sedentary", "light", "moderate", "active", "very active"])
    time_frame = st.sidebar.number_input("Time frame to achieve goal (months)", min_value=1)

    # Submit button
    submit = st.sidebar.button("Submit")

    # Process the image and calculate metrics upon submission
    if submit:
        if image_file:
            st.write("### Results")
            image_bytes = image_file.read()

            # Step 1: Identify the dish
            dish_name = identify_dish(image_bytes)
            st.markdown("<hr>", unsafe_allow_html=True)
            st.write("#### Dish Name Identified:")
            st.markdown(f"<div style='background-color: #d4edda; color: #155724; padding: 10px; border-radius: 10px;'>{dish_name}</div>", unsafe_allow_html=True)

            # Step 2: Perform Calculations
            metrics = calculate_metrics(age, gender, height_cm, weight_kg, weight_goal, activity_level, time_frame)
            st.markdown("<hr>", unsafe_allow_html=True)
            st.write("#### Metrics Calculated:")
            st.markdown(f"""
                <div style='background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 10px;'>
                    <p><b>Your BMI:</b> {metrics['BMI']:.2f}</p>
                    <p><b>Your BMR(Basal metabolic rate):</b> {metrics['BMR']:.2f} calories</p>
                    <p><b>Your TDEE(Total Daily Energy Expenditure):</b> {metrics['TDEE']:.2f} calories</p>
                    <p><b>Ideal Body Weight (IBW):</b> {metrics['IBW']:.2f} kg</p>
                    <p><b>Daily Caloric Needs:</b> {metrics['Daily Caloric Needs']:.2f} calories</p>
                </div>
            """, unsafe_allow_html=True)

            # Step 3: Generate diet plan
            diet_plan = generate_diet_plan(dish_name, metrics["Daily Caloric Needs"], weight_goal)
            st.markdown("<hr>", unsafe_allow_html=True)
            st.write("#### Diet Plan Based on Dish & Goal:")
            st.markdown(f"<div style='background-color: #d1ecf1; color: #0c5460; padding: 10px; border-radius: 10px;'>{diet_plan}</div>", unsafe_allow_html=True)

        else:
            st.error("Please upload a valid image in JPEG, PNG, JPG, or GIF format.")

# If the user selects the User Guide, show a detailed guide about the app
elif menu == "User Guide":
    st.write("## AI Diet Planner User Guide")
    
    st.markdown(""" 
    Welcome to the **AI Diet Planner**! This tool helps you calculate various fitness metrics and suggests personalized diet plans.
    
    ### Steps to Use the App:
    1. **Upload an image of the dish**: Use the sidebar to upload an image in `.jpeg`, `.jpg`, `.png`, or `.gif` format.
    2. **Fill in the personal details**: Input your age, gender, height, weight, activity level, and weight goal.
    3. **Submit**: Click the submit button to receive the results.
    
    ### Features:
    - **Dish Identification**: The app identifies dishes based on the uploaded image.
    - **Metric Calculation**: Calculate BMI, BMR, TDEE, and daily caloric needs based on your personal information.
    - **Personalized Diet Plan**: Get a customized diet plan based on the dish identified and your weight goal.
    """)