สร้าง app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
|
6 |
+
id2label = {0: 'anger', 1: 'anticipation', 2: 'disgust', 3: 'fear', 4: 'joy', 5: 'love', 6: 'optimism', 7: 'pessimism', 8: 'sadness', 9: 'surprise', 10: 'trust'}
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
|
9 |
+
|
10 |
+
async def get_sentiment(text):
|
11 |
+
encoding = tokenizer(text, return_tensors="pt")
|
12 |
+
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
13 |
+
|
14 |
+
outputs = model(**encoding)
|
15 |
+
logits = outputs.logits
|
16 |
+
logits.shape
|
17 |
+
# apply sigmoid + threshold
|
18 |
+
sigmoid = torch.nn.Sigmoid()
|
19 |
+
probs = sigmoid(logits.squeeze().cpu())
|
20 |
+
predictions = np.zeros(probs.shape)
|
21 |
+
predictions[np.where(probs >= 0.5)] = 1
|
22 |
+
|
23 |
+
# turn predicted id's into actual label names
|
24 |
+
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
25 |
+
return predicted_labels
|
26 |
+
|
27 |
+
demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json")
|
28 |
+
|
29 |
+
demo.launch()
|