File size: 19,869 Bytes
b2706cf 3e090a6 b2706cf 3e090a6 b2706cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import json
import os
import uuid
from datetime import datetime
from typing import Dict
import pandas as pd
import streamlit as st
from datasets import load_dataset
from dotenv import load_dotenv
from langgraph_agent import DataAnalystAgent
# Load environment variables
load_dotenv()
# Set up page config
st.set_page_config(
page_title="π€ LangGraph Data Analyst Agent",
layout="wide",
page_icon="π€",
initial_sidebar_state="expanded",
)
# Custom CSS for styling
st.markdown(
"""
<style>
/* Main theme colors */
:root {
--primary-color: #1f77b4;
--secondary-color: #ff7f0e;
--success-color: #2ca02c;
--error-color: #d62728;
--warning-color: #ff9800;
--background-color: #0e1117;
--card-background: #262730;
}
/* Custom styling for the main container */
.main-header {
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
padding: 2rem 1rem;
border-radius: 10px;
margin-bottom: 2rem;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.main-header p {
margin: 0.5rem 0 0 0;
font-size: 1.2rem;
opacity: 0.9;
}
/* Card styling */
.info-card {
background: var(--card-background);
padding: 1.5rem;
border-radius: 10px;
border-left: 4px solid var(--primary-color);
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.success-card {
background: linear-gradient(90deg,
rgba(44, 160, 44, 0.1) 0%,
rgba(44, 160, 44, 0.05) 100%);
border-left: 4px solid var(--success-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.error-card {
background: linear-gradient(90deg,
rgba(214, 39, 40, 0.1) 0%,
rgba(214, 39, 40, 0.05) 100%);
border-left: 4px solid var(--error-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.memory-card {
background: linear-gradient(90deg,
rgba(255, 127, 14, 0.1) 0%,
rgba(255, 127, 14, 0.05) 100%);
border-left: 4px solid var(--secondary-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
/* Chat message styling */
.user-message {
background: linear-gradient(90deg,
rgba(31, 119, 180, 0.1) 0%,
rgba(31, 119, 180, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--primary-color);
}
.assistant-message {
background: linear-gradient(90deg,
rgba(255, 127, 14, 0.1) 0%,
rgba(255, 127, 14, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--secondary-color);
}
.session-info {
background: var(--card-background);
padding: 1rem;
border-radius: 8px;
margin: 0.5rem 0;
border: 1px solid rgba(255, 255, 255, 0.1);
font-size: 0.9rem;
}
/* Animation for thinking indicator */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.thinking-indicator {
animation: pulse 2s infinite;
}
</style>
""",
unsafe_allow_html=True,
)
# API configuration
def get_api_configuration():
"""Get API configuration from environment variables."""
api_key = os.environ.get("NEBIUS_API_KEY") or os.environ.get("OPENAI_API_KEY")
if not api_key:
st.markdown(
"""
<div class="error-card">
<h3>π API Key Configuration Required</h3>
<h4>For Local Development:</h4>
<ol>
<li>Create a <code>.env</code> file in your project directory</li>
<li>Add your API key: <code>NEBIUS_API_KEY=your_api_key_here</code></li>
<li>Or use OpenAI: <code>OPENAI_API_KEY=your_api_key_here</code></li>
<li>Restart the application</li>
</ol>
<h4>For Deployment:</h4>
<ol>
<li>Set environment variable <code>NEBIUS_API_KEY</code> or
<code>OPENAI_API_KEY</code></li>
<li>Restart your application</li>
</ol>
</div>
""",
unsafe_allow_html=True,
)
st.stop()
return api_key
# Initialize the agent
@st.cache_resource
def get_agent(api_key: str) -> DataAnalystAgent:
"""Initialize and cache the LangGraph agent."""
return DataAnalystAgent(api_key=api_key)
# Load dataset
@st.cache_data
def load_bitext_dataset():
"""Load and cache the Bitext dataset."""
try:
dataset = load_dataset(
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
)
df = pd.DataFrame(dataset["train"])
return df
except Exception as e:
st.error(f"Error loading dataset: {e}")
return None
# Session management functions
def initialize_session():
"""Initialize session state variables."""
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
if "conversation_history" not in st.session_state:
st.session_state.conversation_history = []
if "user_profile" not in st.session_state:
st.session_state.user_profile = {}
if "current_thread_id" not in st.session_state:
st.session_state.current_thread_id = st.session_state.session_id
def create_new_session():
"""Create a new session with a new thread ID."""
st.session_state.session_id = str(uuid.uuid4())
st.session_state.current_thread_id = st.session_state.session_id
st.session_state.conversation_history = []
st.session_state.user_profile = {}
def format_conversation_message(role: str, content: str, timestamp: str = None):
"""Format a conversation message for display."""
if timestamp is None:
timestamp = datetime.now().strftime("%H:%M:%S")
if role == "human":
return f"""
<div class="user-message">
<strong>π€ You ({timestamp}):</strong><br>
{content}
</div>
"""
else:
return f"""
<div class="assistant-message">
<strong>π€ Agent ({timestamp}):</strong><br>
{content}
</div>
"""
def display_user_profile(profile: Dict):
"""Display user profile information."""
if not profile:
return
with st.expander("π§ What I Remember About You", expanded=False):
col1, col2 = st.columns(2)
with col1:
st.markdown("**Your Interests:**")
interests = profile.get("interests", [])
if interests:
for interest in interests:
st.write(f"β’ {interest}")
else:
st.write("_No interests recorded yet_")
st.markdown("**Expertise Level:**")
expertise = profile.get("expertise_level", "beginner")
st.write(f"β’ {expertise.title()}")
with col2:
st.markdown("**Your Preferences:**")
preferences = profile.get("preferences", {})
if preferences:
for key, value in preferences.items():
st.write(f"β’ {key}: {value}")
else:
st.write("_No preferences recorded yet_")
st.markdown("**Recent Query Topics:**")
query_history = profile.get("query_history", [])
if query_history:
for query in query_history[-3:]: # Show last 3
st.write(f"β’ {query[:50]}...")
else:
st.write("_No query history yet_")
def main():
# Custom header
st.markdown(
"""
<div class="main-header">
<h1>π€ LangGraph Data Analyst Agent</h1>
<p>Intelligent Analysis with Memory & Recommendations</p>
</div>
""",
unsafe_allow_html=True,
)
# Initialize session
initialize_session()
# Get API configuration
api_key = get_api_configuration()
# Initialize agent
agent = get_agent(api_key)
# Load dataset
with st.spinner("π Loading dataset..."):
df = load_bitext_dataset()
if df is None:
st.markdown(
"""
<div class="error-card">
<h3>β Dataset Loading Failed</h3>
<p>Failed to load dataset. Please check your connection and try again.</p>
</div>
""",
unsafe_allow_html=True,
)
return
# Success message
st.markdown(
f"""
<div class="success-card">
<h3>β
System Ready</h3>
<p>Dataset loaded with <strong>{len(df):,}</strong> records.
LangGraph agent initialized with memory.</p>
</div>
""",
unsafe_allow_html=True,
)
# Sidebar configuration
with st.sidebar:
st.markdown("## βοΈ Session Management")
# Session ID management
st.markdown("### π Session Control")
col1, col2 = st.columns(2)
with col1:
if st.button("π New Session", use_container_width=True):
create_new_session()
st.rerun()
with col2:
if st.button("π Refresh", use_container_width=True):
st.rerun()
# Display session info
st.markdown(
f"""
<div class="session-info">
<strong>Current Session:</strong><br>
<code>{st.session_state.current_thread_id[:8]}...</code><br>
<strong>Messages:</strong> {len(st.session_state.conversation_history)}
</div>
""",
unsafe_allow_html=True,
)
# Custom session ID input
st.markdown("### π Join Existing Session")
custom_thread_id = st.text_input(
"Enter Session ID:",
placeholder="Enter full session ID to join...",
help="Use this to resume a previous conversation",
)
if st.button("π Join Session") and custom_thread_id:
st.session_state.current_thread_id = custom_thread_id
# Load conversation history for this thread
history = agent.get_conversation_history(custom_thread_id)
st.session_state.conversation_history = history
# Load user profile for this thread
profile = agent.get_user_profile(custom_thread_id)
st.session_state.user_profile = profile
st.success(f"Joined session: {custom_thread_id[:8]}...")
st.rerun()
st.markdown("---")
# Dataset info
st.markdown("### π Dataset Info")
col1, col2 = st.columns(2)
with col1:
st.metric("π Records", f"{len(df):,}")
with col2:
st.metric("π Categories", len(df["category"].unique()))
st.metric("π― Intents", len(df["intent"].unique()))
# Quick examples
st.markdown("### π‘ Try These Queries")
example_queries = [
"What are the most common categories?",
"Show me examples of billing issues",
"Summarize the refund category",
"What should I query next?",
"What do you remember about me?",
]
for query in example_queries:
if st.button(f"π¬ {query}", key=f"example_{hash(query)}"):
st.session_state.pending_query = query
st.rerun()
# Main content area
# Display user profile
if st.session_state.user_profile:
display_user_profile(st.session_state.user_profile)
# Dataset information in expandable section
with st.expander("π Dataset Information", expanded=False):
st.markdown("### Dataset Details")
metrics_col1, metrics_col2, metrics_col3, metrics_col4 = st.columns(4)
with metrics_col1:
st.metric("Total Records", f"{len(df):,}")
with metrics_col2:
st.metric("Columns", len(df.columns))
with metrics_col3:
st.metric("Categories", len(df["category"].unique()))
with metrics_col4:
st.metric("Intents", len(df["intent"].unique()))
st.markdown("### Sample Data")
st.dataframe(df.head(), use_container_width=True)
st.markdown("### Category Distribution")
st.bar_chart(df["category"].value_counts())
# User input section
st.markdown("## π¬ Chat with the Agent")
# Handle pending query from sidebar
has_pending_query = hasattr(st.session_state, "pending_query")
if has_pending_query:
user_question = st.session_state.pending_query
delattr(st.session_state, "pending_query")
else:
user_question = st.text_input(
"Ask your question:",
placeholder="e.g., What are the most common customer issues?",
key="user_input",
help="Ask about statistics, examples, insights, or request recommendations",
)
# Submit button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
submit_clicked = st.button("π Send Message", use_container_width=True)
# Process query
if (submit_clicked or has_pending_query) and user_question:
# Add user message to local history
timestamp = datetime.now().strftime("%H:%M:%S")
st.session_state.conversation_history.append(
{"role": "human", "content": user_question, "timestamp": timestamp}
)
# Show thinking indicator
thinking_placeholder = st.empty()
thinking_placeholder.markdown(
"""
<div class="thinking-indicator">
<div class="info-card">
βοΈ <strong>Agent is thinking...</strong>
Processing your query through the LangGraph workflow.
</div>
</div>
""",
unsafe_allow_html=True,
)
try:
# Invoke the agent
result = agent.invoke(user_question, st.session_state.current_thread_id)
# Get the last assistant message
assistant_response = None
for msg in reversed(result["messages"]):
if (
hasattr(msg, "content")
and msg.content
and not isinstance(msg, type(user_question))
):
# Check if this is an AI message (not human or tool message)
if not hasattr(msg, "tool_calls") or not msg.tool_calls:
if "human" not in str(type(msg)).lower():
content = msg.content
# Clean up Qwen model thinking tags
if "<think>" in content and "</think>" in content:
# Extract only the part after </think>
parts = content.split("</think>")
if len(parts) > 1:
content = parts[1].strip()
assistant_response = content
break
if not assistant_response:
assistant_response = "I processed your query but couldn't generate a response. Please try again."
# Add assistant response to local history
st.session_state.conversation_history.append(
{
"role": "assistant",
"content": assistant_response,
"timestamp": datetime.now().strftime("%H:%M:%S"),
}
)
# Update user profile from agent state
if result.get("user_profile"):
st.session_state.user_profile = result["user_profile"]
except Exception as e:
error_msg = f"Sorry, I encountered an error: {str(e)}"
st.session_state.conversation_history.append(
{
"role": "assistant",
"content": error_msg,
"timestamp": datetime.now().strftime("%H:%M:%S"),
}
)
finally:
thinking_placeholder.empty()
# Clear the input and rerun to show new messages
st.rerun()
# Display conversation
if st.session_state.conversation_history:
st.markdown("## π Conversation")
# Display messages
for i, message in enumerate(st.session_state.conversation_history):
message_html = format_conversation_message(
message["role"], message["content"], message.get("timestamp", "")
)
st.markdown(message_html, unsafe_allow_html=True)
# Add separator except for last message
if i < len(st.session_state.conversation_history) - 1:
st.markdown("---")
# Action buttons
col1, col2, col3 = st.columns(3)
with col1:
if st.button("ποΈ Clear Chat"):
st.session_state.conversation_history = []
st.rerun()
with col2:
if st.button("πΎ Export Chat"):
chat_data = {
"session_id": st.session_state.current_thread_id,
"timestamp": datetime.now().isoformat(),
"conversation": st.session_state.conversation_history,
"user_profile": st.session_state.user_profile,
}
st.download_button(
label="π₯ Download JSON",
data=json.dumps(chat_data, indent=2),
file_name=f"chat_export_{st.session_state.current_thread_id[:8]}.json",
mime="application/json",
)
with col3:
if st.button("π€ Get Recommendations"):
st.session_state.pending_query = "What should I query next?"
st.rerun()
# Instructions
with st.expander("π How to Use This Agent", expanded=False):
st.markdown(
"""
### π― Query Types Supported:
**Structured Queries (Quantitative):**
- "How many records are in each category?"
- "Show me 5 examples of billing issues"
- "What are the most common intents?"
**Unstructured Queries (Qualitative):**
- "Summarize the refund category"
- "What patterns do you see in payment issues?"
- "Analyze customer sentiment in billing conversations"
**Memory & Recommendations:**
- "What do you remember about me?"
- "What should I query next?"
- "Advise me what to explore"
### π§ Memory Features:
- **Session Persistence:** Your conversations are saved across page reloads
- **User Profile:** The agent learns about your interests and preferences
- **Query History:** Past queries influence future recommendations
- **Cross-Session:** Use session IDs to resume conversations later
### π§ Advanced Features:
- **Multi-Agent Architecture:** Separate agents for different query types
- **Tool Usage:** Dynamic tool selection based on your needs
- **Interactive Recommendations:** Collaborative query refinement
"""
)
if __name__ == "__main__":
main()
|