File size: 23,099 Bytes
b2706cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import json
import os
from enum import Enum
from typing import Any, Dict, List, Optional, TypedDict
import pandas as pd
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph
from langgraph.prebuilt import ToolNode
from pydantic import BaseModel, Field
# Enums for query types
class QueryType(str, Enum):
STRUCTURED = "structured"
UNSTRUCTURED = "unstructured"
OUT_OF_SCOPE = "out_of_scope"
RECOMMEND_QUERY = "recommend_query"
class AnalysisType(str, Enum):
QUANTITATIVE = "quantitative"
QUALITATIVE = "qualitative"
OUT_OF_SCOPE = "out_of_scope"
# State definition
class AgentState(TypedDict):
messages: List[Any]
query_type: Optional[str]
analysis_result: Optional[Dict[str, Any]]
user_profile: Optional[Dict[str, Any]]
session_context: Optional[Dict[str, Any]]
recommendations: Optional[List[str]]
# User profile model
class UserProfile(BaseModel):
interests: List[str] = Field(default_factory=list)
query_history: List[str] = Field(default_factory=list)
preferences: Dict[str, Any] = Field(default_factory=dict)
expertise_level: str = "beginner"
# Dataset management
class DatasetManager:
_instance = None
_df = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(DatasetManager, cls).__new__(cls)
return cls._instance
def get_dataset(self) -> pd.DataFrame:
if self._df is None:
from datasets import load_dataset
dataset = load_dataset(
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
)
self._df = pd.DataFrame(dataset["train"])
return self._df
# Tools for structured queries (quantitative analysis)
@tool
def get_category_distribution() -> Dict[str, int]:
"""Get the distribution of categories in the dataset."""
df = DatasetManager().get_dataset()
return df["category"].value_counts().to_dict()
@tool
def get_intent_distribution() -> Dict[str, int]:
"""Get the distribution of intents in the dataset."""
df = DatasetManager().get_dataset()
return df["intent"].value_counts().to_dict()
@tool
def get_dataset_stats() -> Dict[str, Any]:
"""Get basic statistics about the dataset."""
df = DatasetManager().get_dataset()
return {
"total_records": len(df),
"unique_categories": len(df["category"].unique()),
"unique_intents": len(df["intent"].unique()),
"columns": df.columns.tolist(),
}
@tool
def get_examples_by_category(category: str, n: int = 5) -> List[Dict[str, Any]]:
"""Get examples from a specific category."""
df = DatasetManager().get_dataset()
filtered_df = df[df["category"].str.lower() == category.lower()]
if filtered_df.empty:
return []
return filtered_df.head(n).to_dict("records")
@tool
def get_examples_by_intent(intent: str, n: int = 5) -> List[Dict[str, Any]]:
"""Get examples from a specific intent."""
df = DatasetManager().get_dataset()
filtered_df = df[df["intent"].str.lower() == intent.lower()]
if filtered_df.empty:
return []
return filtered_df.head(n).to_dict("records")
@tool
def search_conversations(query: str, n: int = 5) -> List[Dict[str, Any]]:
"""Search for conversations containing specific keywords."""
df = DatasetManager().get_dataset()
mask = df["customer"].str.contains(query, case=False, na=False) | df[
"agent"
].str.contains(query, case=False, na=False)
filtered_df = df[mask]
return filtered_df.head(n).to_dict("records")
# Tools for unstructured queries (qualitative analysis)
@tool
def get_category_summary(category: str) -> Dict[str, Any]:
"""Get a summary of conversations in a specific category."""
df = DatasetManager().get_dataset()
filtered_df = df[df["category"].str.lower() == category.lower()]
if filtered_df.empty:
return {"error": f"No data found for category: {category}"}
return {
"category": category,
"count": len(filtered_df),
"unique_intents": filtered_df["intent"].nunique(),
"intents": filtered_df["intent"].value_counts().to_dict(),
"sample_conversations": filtered_df.head(3).to_dict("records"),
}
@tool
def get_intent_summary(intent: str) -> Dict[str, Any]:
"""Get a summary of conversations for a specific intent."""
df = DatasetManager().get_dataset()
filtered_df = df[df["intent"].str.lower() == intent.lower()]
if filtered_df.empty:
return {"error": f"No data found for intent: {intent}"}
return {
"intent": intent,
"count": len(filtered_df),
"categories": filtered_df["category"].value_counts().to_dict(),
"sample_conversations": filtered_df.head(3).to_dict("records"),
}
# Memory tools
@tool
def update_user_profile(
interests: List[str], preferences: Dict[str, Any], expertise_level: str = "beginner"
) -> Dict[str, Any]:
"""Update the user's profile with new information."""
return {
"interests": interests,
"preferences": preferences,
"expertise_level": expertise_level,
"updated": True,
}
# Define tool lists for different agents
structured_tools = [
get_category_distribution,
get_intent_distribution,
get_dataset_stats,
get_examples_by_category,
get_examples_by_intent,
search_conversations,
]
unstructured_tools = [
get_category_summary,
get_intent_summary,
search_conversations,
get_examples_by_category,
get_examples_by_intent,
]
memory_tools = [update_user_profile]
class DataAnalystAgent:
def __init__(self, api_key: str, model_name: str = None):
# Determine if using Nebius or OpenAI based on API key source
is_nebius = os.environ.get("NEBIUS_API_KEY") == api_key
if is_nebius:
# Configure for Nebius API
self.llm = ChatOpenAI(
api_key=api_key,
model=model_name or "Qwen/Qwen3-30B-A3B",
base_url="https://api.studio.nebius.com/v1",
temperature=0,
)
else:
# Configure for OpenAI API
self.llm = ChatOpenAI(
api_key=api_key, model=model_name or "gpt-4o", temperature=0
)
self.memory = MemorySaver()
self.graph = self._build_graph()
def _build_graph(self) -> StateGraph:
"""Build the LangGraph workflow."""
builder = StateGraph(AgentState)
# Add nodes
builder.add_node("classifier", self._classify_query)
builder.add_node("structured_agent", self._structured_agent)
builder.add_node("unstructured_agent", self._unstructured_agent)
builder.add_node("structured_tools", ToolNode(structured_tools))
builder.add_node("unstructured_tools", ToolNode(unstructured_tools))
builder.add_node("summarizer", self._update_summary)
builder.add_node("recommender", self._recommend_queries)
builder.add_node("out_of_scope", self._handle_out_of_scope)
# Add edges
builder.add_edge(START, "classifier")
# Conditional edges from classifier
builder.add_conditional_edges(
"classifier",
self._route_query,
{
"structured": "structured_agent",
"unstructured": "unstructured_agent",
"out_of_scope": "out_of_scope",
"recommend_query": "recommender",
},
)
# Tool routing for structured agent
builder.add_conditional_edges(
"structured_agent",
self._should_use_tools,
{"tools": "structured_tools", "end": "summarizer"},
)
# Tool routing for unstructured agent
builder.add_conditional_edges(
"unstructured_agent",
self._should_use_tools,
{"tools": "unstructured_tools", "end": "summarizer"},
)
# From tools back to respective agents
builder.add_edge("structured_tools", "structured_agent")
builder.add_edge("unstructured_tools", "unstructured_agent")
# End edges
builder.add_edge("summarizer", END)
builder.add_edge("out_of_scope", END)
builder.add_edge("recommender", END)
return builder.compile(checkpointer=self.memory)
def _classify_query(self, state: AgentState) -> AgentState:
"""Classify the user query into different types."""
last_message = state["messages"][-1]
user_query = last_message.content.lower()
# Simple keyword-based classification for better reliability
# Check for recommendation requests first
if any(
word in user_query
for word in [
"what should i",
"what to query",
"recommend",
"suggest",
"advise",
"what next",
"what can i ask",
]
):
query_type = "recommend_query"
# Check for out of scope queries
elif any(
word in user_query
for word in [
"weather",
"news",
"sports",
"politics",
"cooking",
"travel",
"music",
"movies",
"games",
"programming",
"code",
]
) and not any(
word in user_query
for word in ["category", "intent", "customer", "support", "data", "records"]
):
query_type = "out_of_scope"
# Check for unstructured/qualitative queries
elif any(
word in user_query
for word in [
"summarize",
"summary",
"patterns",
"insights",
"analysis",
"analyze",
"themes",
"trends",
"what patterns",
"understand",
]
):
query_type = "unstructured"
# Default to structured for data-related queries
else:
query_type = "structured"
# Double-check with LLM for edge cases, but use simpler prompt
if query_type == "out_of_scope":
simple_prompt = f"""
Is this question about customer support data analysis?
Question: "{last_message.content}"
Answer only "yes" or "no".
"""
try:
response = self.llm.invoke([HumanMessage(content=simple_prompt)])
if "yes" in response.content.lower():
query_type = "structured" # Override if actually about data
except Exception:
pass # Keep original classification if LLM fails
state["query_type"] = query_type
return state
def _route_query(self, state: AgentState) -> str:
"""Route to appropriate agent based on classification."""
return state["query_type"]
def _structured_agent(self, state: AgentState) -> AgentState:
"""Handle structured/quantitative queries."""
system_prompt = """
You are a data analyst that MUST use tools to answer questions about
customer support data. You have access to these tools:
- get_category_distribution: Get category counts
- get_intent_distribution: Get intent counts
- get_dataset_stats: Get basic dataset statistics
- get_examples_by_category: Get examples from a category
- get_examples_by_intent: Get examples from an intent
- search_conversations: Search for conversations with keywords
IMPORTANT: Always use the appropriate tool to get real data.
Do NOT make up or guess answers. Use tools to get actual numbers.
For questions about:
- "How many categories" or "category distribution" β use get_category_distribution
- "How many intents" or "intent distribution" β use get_intent_distribution
- "Total records" or "dataset size" β use get_dataset_stats
- "Examples of X" β use get_examples_by_category or get_examples_by_intent
- "Search for X" β use search_conversations
"""
llm_with_tools = self.llm.bind_tools(structured_tools)
messages = [SystemMessage(content=system_prompt)] + state["messages"]
response = llm_with_tools.invoke(messages)
state["messages"].append(response)
return state
def _unstructured_agent(self, state: AgentState) -> AgentState:
"""Handle unstructured/qualitative queries."""
system_prompt = """
You are a data analyst that MUST use tools to provide insights about
customer support data. You have access to these tools:
- get_category_summary: Get detailed summary of a category
- get_intent_summary: Get detailed summary of an intent
- search_conversations: Search conversations for patterns
- get_examples_by_category: Get examples to analyze patterns
- get_examples_by_intent: Get examples to analyze patterns
IMPORTANT: Always use the appropriate tool to get real data.
Do NOT make up or guess insights. Use tools to get actual data first.
For questions about:
- "Summarize X category" β use get_category_summary
- "Analyze X intent" β use get_intent_summary
- "Patterns in X" β use get_examples_by_category or search_conversations
"""
llm_with_tools = self.llm.bind_tools(unstructured_tools)
messages = [SystemMessage(content=system_prompt)] + state["messages"]
response = llm_with_tools.invoke(messages)
state["messages"].append(response)
return state
def _should_use_tools(self, state: AgentState) -> str:
"""Determine if the agent should use tools or end."""
last_message = state["messages"][-1]
# Check if LLM made tool calls
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
return "tools"
# If no tool calls but this is the first response from agent,
# force tool usage for data questions
messages = state["messages"]
human_messages = [msg for msg in messages if isinstance(msg, HumanMessage)]
if len(human_messages) >= 1:
last_human_msg = human_messages[-1].content.lower()
# Check if this looks like a data question that needs tools
needs_tools = any(
word in last_human_msg
for word in [
"how many",
"show me",
"examples",
"distribution",
"categories",
"intents",
"records",
"statistics",
"stats",
"count",
"total",
"billing",
"refund",
"payment",
"technical",
"support",
]
)
# Count AI messages - if this is first AI response and needs tools, force it
ai_messages = [msg for msg in messages if not isinstance(msg, HumanMessage)]
if needs_tools and len(ai_messages) <= 1:
return "tools"
return "end"
def _update_summary(self, state: AgentState) -> AgentState:
"""Update user profile/summary based on the interaction."""
user_profile = state.get("user_profile", {})
last_human_message = None
# Find the last human message
for msg in reversed(state["messages"]):
if isinstance(msg, HumanMessage):
last_human_message = msg
break
if last_human_message:
# Extract information about user interests
system_prompt = """
Based on the user's question, extract information about their
interests and update their profile. Consider:
- What categories/intents they're interested in
- Their level of technical detail preference
- Types of analysis they prefer
Return a JSON with:
{
"interests": ["list of topics they seem interested in"],
"preferences": {"any preferences about analysis style"},
"expertise_level": "beginner/intermediate/advanced"
}
If no clear information can be extracted, return empty lists/dicts.
"""
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=f"User question: {last_human_message.content}"),
]
try:
response = self.llm.invoke(messages)
profile_update = json.loads(response.content)
# Merge with existing profile
if not user_profile:
user_profile = {
"interests": [],
"preferences": {},
"expertise_level": "beginner",
"query_history": [],
}
# Update interests (avoid duplicates)
new_interests = profile_update.get("interests", [])
existing_interests = user_profile.get("interests", [])
user_profile["interests"] = list(
set(existing_interests + new_interests)
)
# Update preferences
user_profile["preferences"].update(
profile_update.get("preferences", {})
)
# Update expertise level if provided
if profile_update.get("expertise_level"):
user_profile["expertise_level"] = profile_update["expertise_level"]
# Add to query history
if "query_history" not in user_profile:
user_profile["query_history"] = []
user_profile["query_history"].append(last_human_message.content)
# Keep only last 10 queries
user_profile["query_history"] = user_profile["query_history"][-10:]
except (json.JSONDecodeError, Exception):
# If parsing fails, just add to query history
if not user_profile:
user_profile = {"query_history": []}
if "query_history" not in user_profile:
user_profile["query_history"] = []
user_profile["query_history"].append(last_human_message.content)
user_profile["query_history"] = user_profile["query_history"][-10:]
state["user_profile"] = user_profile
return state
def _recommend_queries(self, state: AgentState) -> AgentState:
"""Recommend next queries based on conversation history and user profile."""
user_profile = state.get("user_profile", {})
query_history = user_profile.get("query_history", [])
interests = user_profile.get("interests", [])
# Get dataset info for context
df = DatasetManager().get_dataset()
categories = df["category"].unique().tolist()
intents = df["intent"].unique()[:20].tolist()
system_prompt = f"""
You are a query recommendation assistant. Based on the user's conversation
history and interests, suggest relevant follow-up questions they could ask
about the customer support dataset.
User's query history: {query_history}
User's interests: {interests}
Available categories: {categories}
Sample intents: {intents}
Suggest 3-5 relevant questions the user might want to ask next. Consider:
- Natural follow-ups to their previous questions
- Related categories or intents they haven't explored
- Different types of analysis (if they've only done quantitative,
suggest qualitative and vice versa)
Be conversational and explain why each suggestion might be interesting.
Start with "Based on your previous queries, you might want to..."
"""
messages = [SystemMessage(content=system_prompt)]
# Add conversation context
if state["messages"]:
messages.extend(state["messages"])
else:
messages.append(HumanMessage(content="What should I query next?"))
response = self.llm.invoke(messages)
state["messages"].append(response)
return state
def _handle_out_of_scope(self, state: AgentState) -> AgentState:
"""Handle queries that are out of scope."""
response = AIMessage(
content="I'm sorry, but I can only answer questions about the customer "
"support dataset. Please ask questions about categories, intents, "
"conversation examples, or data statistics."
)
state["messages"].append(response)
return state
def invoke(self, message: str, thread_id: str) -> Dict[str, Any]:
"""Invoke the agent with a message and thread ID."""
config = {"configurable": {"thread_id": thread_id}}
# Create input state
input_state = {"messages": [HumanMessage(content=message)]}
# Invoke the graph
result = self.graph.invoke(input_state, config)
return result
def get_conversation_history(self, thread_id: str) -> List[Dict[str, Any]]:
"""Get conversation history for a thread."""
config = {"configurable": {"thread_id": thread_id}}
try:
# Get the current state
state = self.graph.get_state(config)
if state and state.values.get("messages"):
return [
{
"role": (
"human" if isinstance(msg, HumanMessage) else "assistant"
),
"content": msg.content,
}
for msg in state.values["messages"]
]
except Exception:
pass
return []
def get_user_profile(self, thread_id: str) -> Dict[str, Any]:
"""Get user profile for a thread."""
config = {"configurable": {"thread_id": thread_id}}
try:
state = self.graph.get_state(config)
if state and state.values.get("user_profile"):
return state.values["user_profile"]
except Exception:
pass
return {}
|