Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +43 -20
- app.py +845 -0
- requirements.txt +7 -3
README.md
CHANGED
|
@@ -1,20 +1,43 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LLM-powered Data Analyst Agent
|
| 2 |
+
|
| 3 |
+
This Streamlit application uses an LLM-powered agent to analyze the Bitext Customer Support LLM Chatbot Training Dataset. The agent can answer user questions about the dataset, performing both structured (quantitative) and unstructured (qualitative) analysis.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- Ask questions about the customer support dataset
|
| 8 |
+
- Support for different types of analysis:
|
| 9 |
+
- Structured (Quantitative): Category frequencies, examples, intent distributions
|
| 10 |
+
- Unstructured (Qualitative): Summarize categories, analyze intents
|
| 11 |
+
- Scope detection to identify if questions are answerable from the dataset
|
| 12 |
+
- Support for follow-up questions
|
| 13 |
+
- Toggle between planning modes:
|
| 14 |
+
- Pre-planning + Execution: First classify the question, then execute the response
|
| 15 |
+
- ReActive Dynamic Planning: Let the LLM dynamically plan and execute the response
|
| 16 |
+
|
| 17 |
+
## Setup
|
| 18 |
+
|
| 19 |
+
1. Clone this repository
|
| 20 |
+
2. Install the required dependencies:
|
| 21 |
+
```
|
| 22 |
+
pip install -r requirements.txt
|
| 23 |
+
```
|
| 24 |
+
3. Run the Streamlit app:
|
| 25 |
+
```
|
| 26 |
+
streamlit run app.py
|
| 27 |
+
```
|
| 28 |
+
4. Enter your OpenAI API key when prompted
|
| 29 |
+
|
| 30 |
+
## Example Questions
|
| 31 |
+
|
| 32 |
+
- "What are the most frequent categories?"
|
| 33 |
+
- "Show examples of billing category"
|
| 34 |
+
- "What categories exist in the dataset?"
|
| 35 |
+
- "Summarize the technical support category"
|
| 36 |
+
- "What are the common intents in the billing category?"
|
| 37 |
+
- "How do agents typically respond to refund requests?"
|
| 38 |
+
|
| 39 |
+
## Requirements
|
| 40 |
+
|
| 41 |
+
- Python 3.8+
|
| 42 |
+
- OpenAI API key (gpt-4o model access)
|
| 43 |
+
- Internet connection (to download the dataset)
|
app.py
ADDED
|
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from enum import Enum
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import requests
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
from pydantic import BaseModel, Field
|
| 12 |
+
|
| 13 |
+
# Load environment variables from .env file (for local development)
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Set up page config with custom styling
|
| 17 |
+
st.set_page_config(
|
| 18 |
+
page_title="π€ LLM Data Analyst Agent",
|
| 19 |
+
layout="wide",
|
| 20 |
+
page_icon="π€",
|
| 21 |
+
initial_sidebar_state="expanded",
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Custom CSS for styling
|
| 25 |
+
st.markdown(
|
| 26 |
+
"""
|
| 27 |
+
<style>
|
| 28 |
+
/* Main theme colors */
|
| 29 |
+
:root {
|
| 30 |
+
--primary-color: #1f77b4;
|
| 31 |
+
--secondary-color: #ff7f0e;
|
| 32 |
+
--success-color: #2ca02c;
|
| 33 |
+
--error-color: #d62728;
|
| 34 |
+
--warning-color: #ff9800;
|
| 35 |
+
--background-color: #0e1117;
|
| 36 |
+
--card-background: #262730;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
/* Custom styling for the main container */
|
| 40 |
+
.main-header {
|
| 41 |
+
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
|
| 42 |
+
padding: 2rem 1rem;
|
| 43 |
+
border-radius: 10px;
|
| 44 |
+
margin-bottom: 2rem;
|
| 45 |
+
text-align: center;
|
| 46 |
+
color: white;
|
| 47 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
.main-header h1 {
|
| 51 |
+
margin: 0;
|
| 52 |
+
font-size: 2.5rem;
|
| 53 |
+
font-weight: 700;
|
| 54 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
.main-header p {
|
| 58 |
+
margin: 0.5rem 0 0 0;
|
| 59 |
+
font-size: 1.2rem;
|
| 60 |
+
opacity: 0.9;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
/* Card styling */
|
| 64 |
+
.info-card {
|
| 65 |
+
background: var(--card-background);
|
| 66 |
+
padding: 1.5rem;
|
| 67 |
+
border-radius: 10px;
|
| 68 |
+
border-left: 4px solid var(--primary-color);
|
| 69 |
+
margin: 1rem 0;
|
| 70 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
.success-card {
|
| 74 |
+
background: linear-gradient(90deg, rgba(44, 160, 44, 0.1) 0%, rgba(44, 160, 44, 0.05) 100%);
|
| 75 |
+
border-left: 4px solid var(--success-color);
|
| 76 |
+
padding: 1rem;
|
| 77 |
+
border-radius: 8px;
|
| 78 |
+
margin: 1rem 0;
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
.error-card {
|
| 82 |
+
background: linear-gradient(90deg, rgba(214, 39, 40, 0.1) 0%, rgba(214, 39, 40, 0.05) 100%);
|
| 83 |
+
border-left: 4px solid var(--error-color);
|
| 84 |
+
padding: 1rem;
|
| 85 |
+
border-radius: 8px;
|
| 86 |
+
margin: 1rem 0;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
.quick-actions-card {
|
| 90 |
+
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
|
| 91 |
+
padding: 1.5rem;
|
| 92 |
+
border-radius: 10px;
|
| 93 |
+
border-left: 4px solid var(--primary-color);
|
| 94 |
+
margin: 1rem 0;
|
| 95 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 96 |
+
color: #2c3e50;
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
.quick-actions-card h3 {
|
| 100 |
+
color: var(--primary-color);
|
| 101 |
+
margin-top: 0;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.quick-actions-card ul {
|
| 105 |
+
margin-bottom: 0;
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
.quick-actions-card li {
|
| 109 |
+
margin-bottom: 0.5rem;
|
| 110 |
+
color: #495057;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
/* Button styling */
|
| 114 |
+
.stButton > button {
|
| 115 |
+
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
|
| 116 |
+
color: white;
|
| 117 |
+
border: none;
|
| 118 |
+
border-radius: 25px;
|
| 119 |
+
padding: 0.5rem 2rem;
|
| 120 |
+
font-weight: 600;
|
| 121 |
+
transition: all 0.3s ease;
|
| 122 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
.stButton > button:hover {
|
| 126 |
+
transform: translateY(-2px);
|
| 127 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
/* Sidebar styling */
|
| 131 |
+
.css-1d391kg {
|
| 132 |
+
background: linear-gradient(180deg, #1f77b4 0%, #0e4b7a 100%);
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
/* Metrics styling */
|
| 136 |
+
.metric-container {
|
| 137 |
+
background: var(--card-background);
|
| 138 |
+
padding: 1rem;
|
| 139 |
+
border-radius: 8px;
|
| 140 |
+
text-align: center;
|
| 141 |
+
margin: 0.5rem 0;
|
| 142 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
/* Chat message styling */
|
| 146 |
+
.user-message {
|
| 147 |
+
background: linear-gradient(90deg, rgba(31, 119, 180, 0.1) 0%, rgba(31, 119, 180, 0.05) 100%);
|
| 148 |
+
padding: 1rem;
|
| 149 |
+
border-radius: 10px;
|
| 150 |
+
margin: 0.5rem 0;
|
| 151 |
+
border-left: 4px solid var(--primary-color);
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
.assistant-message {
|
| 155 |
+
background: linear-gradient(90deg, rgba(255, 127, 14, 0.1) 0%, rgba(255, 127, 14, 0.05) 100%);
|
| 156 |
+
padding: 1rem;
|
| 157 |
+
border-radius: 10px;
|
| 158 |
+
margin: 0.5rem 0;
|
| 159 |
+
border-left: 4px solid var(--secondary-color);
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
/* Planning mode styling */
|
| 163 |
+
.planning-badge {
|
| 164 |
+
display: inline-block;
|
| 165 |
+
padding: 0.3rem 0.8rem;
|
| 166 |
+
border-radius: 15px;
|
| 167 |
+
font-size: 0.8rem;
|
| 168 |
+
font-weight: 600;
|
| 169 |
+
text-transform: uppercase;
|
| 170 |
+
letter-spacing: 0.5px;
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
.pre-planning {
|
| 174 |
+
background: rgba(31, 119, 180, 0.2);
|
| 175 |
+
color: var(--primary-color);
|
| 176 |
+
border: 1px solid var(--primary-color);
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
.reactive-planning {
|
| 180 |
+
background: rgba(255, 127, 14, 0.2);
|
| 181 |
+
color: var(--secondary-color);
|
| 182 |
+
border: 1px solid var(--secondary-color);
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
/* Animation for thinking indicator */
|
| 186 |
+
@keyframes pulse {
|
| 187 |
+
0% { opacity: 1; }
|
| 188 |
+
50% { opacity: 0.5; }
|
| 189 |
+
100% { opacity: 1; }
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
.thinking-indicator {
|
| 193 |
+
animation: pulse 2s infinite;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
/* Improved expander styling */
|
| 197 |
+
.streamlit-expanderHeader {
|
| 198 |
+
background: var(--card-background);
|
| 199 |
+
border-radius: 5px;
|
| 200 |
+
}
|
| 201 |
+
</style>
|
| 202 |
+
""",
|
| 203 |
+
unsafe_allow_html=True,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# API configuration - works for both local and Hugging Face deployment
|
| 207 |
+
api_key = os.environ.get("NEBIUS_API_KEY")
|
| 208 |
+
|
| 209 |
+
if not api_key:
|
| 210 |
+
st.markdown(
|
| 211 |
+
"""
|
| 212 |
+
<div class="error-card">
|
| 213 |
+
<h3>π API Key Configuration Required</h3>
|
| 214 |
+
|
| 215 |
+
<h4>For Local Development:</h4>
|
| 216 |
+
<ol>
|
| 217 |
+
<li>Open the <code>.env</code> file in your project directory</li>
|
| 218 |
+
<li>Replace <code>your_api_key_here</code> with your actual Nebius API key</li>
|
| 219 |
+
<li>Save the file and restart the application</li>
|
| 220 |
+
</ol>
|
| 221 |
+
<p><strong>Example .env file:</strong></p>
|
| 222 |
+
<pre>NEBIUS_API_KEY=your_actual_api_key_here</pre>
|
| 223 |
+
|
| 224 |
+
<h4>For Hugging Face Spaces Deployment:</h4>
|
| 225 |
+
<ol>
|
| 226 |
+
<li>Go to your Space settings</li>
|
| 227 |
+
<li>Navigate to the "Variables and secrets" section</li>
|
| 228 |
+
<li>Add a new secret: <code>NEBIUS_API_KEY</code> with your API key value</li>
|
| 229 |
+
<li>Restart your Space</li>
|
| 230 |
+
</ol>
|
| 231 |
+
|
| 232 |
+
<p><em>π‘ The app will automatically detect the environment and use the appropriate method.</em></p>
|
| 233 |
+
</div>
|
| 234 |
+
""",
|
| 235 |
+
unsafe_allow_html=True,
|
| 236 |
+
)
|
| 237 |
+
st.stop()
|
| 238 |
+
|
| 239 |
+
# Set the API key in environment for consistency
|
| 240 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 241 |
+
|
| 242 |
+
# Nebius API settings
|
| 243 |
+
NEBIUS_API_URL = "https://api.studio.nebius.com/v1/chat/completions"
|
| 244 |
+
MODEL_NAME = "Qwen/Qwen3-30B-A3B"
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
# Function to call Nebius API
|
| 248 |
+
def call_nebius_api(messages, response_format=None, thinking_mode=False):
|
| 249 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
| 250 |
+
|
| 251 |
+
payload = {"model": MODEL_NAME, "messages": messages}
|
| 252 |
+
|
| 253 |
+
if response_format:
|
| 254 |
+
payload["response_format"] = response_format
|
| 255 |
+
|
| 256 |
+
# If in thinking mode, ask the model to show its reasoning
|
| 257 |
+
if thinking_mode:
|
| 258 |
+
# Add instruction to show thinking process
|
| 259 |
+
last_message = messages[-1]
|
| 260 |
+
enhanced_content = (
|
| 261 |
+
f"{last_message['content']}\n\n"
|
| 262 |
+
f"Important: First explain your thinking process step by step, "
|
| 263 |
+
f"then provide your final answer clearly labeled as 'FINAL ANSWER:'"
|
| 264 |
+
)
|
| 265 |
+
messages[-1]["content"] = enhanced_content
|
| 266 |
+
payload["messages"] = messages
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
response = requests.post(NEBIUS_API_URL, headers=headers, json=payload)
|
| 270 |
+
response.raise_for_status()
|
| 271 |
+
return response.json()
|
| 272 |
+
except Exception as e:
|
| 273 |
+
st.error(f"API Error: {str(e)}")
|
| 274 |
+
if hasattr(e, "response") and hasattr(e.response, "text"):
|
| 275 |
+
st.error(f"Response: {e.response.text}")
|
| 276 |
+
return None
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# Load Bitext dataset
|
| 280 |
+
@st.cache_data
|
| 281 |
+
def load_bitext_dataset():
|
| 282 |
+
try:
|
| 283 |
+
dataset = load_dataset(
|
| 284 |
+
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
|
| 285 |
+
)
|
| 286 |
+
df = pd.DataFrame(dataset["train"])
|
| 287 |
+
return df
|
| 288 |
+
except Exception as e:
|
| 289 |
+
st.error(f"Error loading dataset: {e}")
|
| 290 |
+
return None
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
# Define enums for request types
|
| 294 |
+
class AnalysisType(str, Enum):
|
| 295 |
+
QUANTITATIVE = "quantitative"
|
| 296 |
+
QUALITATIVE = "qualitative"
|
| 297 |
+
OUT_OF_SCOPE = "out_of_scope"
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class ColumnType(str, Enum):
|
| 301 |
+
CATEGORY = "category"
|
| 302 |
+
INTENT = "intent"
|
| 303 |
+
CUSTOMER = "customer"
|
| 304 |
+
AGENT = "agent"
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# Define schema for agent requests
|
| 308 |
+
class AgentRequest(BaseModel):
|
| 309 |
+
question: str = Field(..., description="The user's question")
|
| 310 |
+
analysis_type: AnalysisType = Field(..., description="Type of analysis to perform")
|
| 311 |
+
target_columns: Optional[List[ColumnType]] = Field(
|
| 312 |
+
None, description="Columns to analyze"
|
| 313 |
+
)
|
| 314 |
+
is_follow_up: bool = Field(
|
| 315 |
+
False, description="Whether this is a follow-up question"
|
| 316 |
+
)
|
| 317 |
+
previous_context: Optional[str] = Field(
|
| 318 |
+
None, description="Context from previous question"
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Function to classify the user question
|
| 323 |
+
def classify_question(
|
| 324 |
+
question: str, previous_context: Optional[str] = None
|
| 325 |
+
) -> AgentRequest:
|
| 326 |
+
"""
|
| 327 |
+
Use the LLM to classify the question and determine the analysis type and target columns.
|
| 328 |
+
"""
|
| 329 |
+
system_prompt = """
|
| 330 |
+
You are a data analyst assistant that classifies user questions about a customer support dataset.
|
| 331 |
+
The dataset contains customer support conversations with these columns:
|
| 332 |
+
- category: The category of the customer query
|
| 333 |
+
- intent: The specific intent of the customer query
|
| 334 |
+
- customer: The customer's message
|
| 335 |
+
- agent: The agent's response
|
| 336 |
+
|
| 337 |
+
Classify the question into one of these types:
|
| 338 |
+
- quantitative: Questions about statistics, frequencies, distributions, or examples of categories/intents
|
| 339 |
+
- qualitative: Questions asking for summaries or insights about specific categories/intents
|
| 340 |
+
- out_of_scope: Questions that cannot be answered using the dataset
|
| 341 |
+
|
| 342 |
+
Also identify which columns are relevant to the question.
|
| 343 |
+
|
| 344 |
+
Return a JSON object with the following fields:
|
| 345 |
+
{
|
| 346 |
+
"analysis_type": "quantitative" | "qualitative" | "out_of_scope",
|
| 347 |
+
"target_columns": ["category", "intent", "customer", "agent"]
|
| 348 |
+
}
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
context_info = f"\nPrevious context: {previous_context}" if previous_context else ""
|
| 352 |
+
|
| 353 |
+
user_prompt = f"Classify this question: {question}{context_info}"
|
| 354 |
+
|
| 355 |
+
response = call_nebius_api(
|
| 356 |
+
[
|
| 357 |
+
{"role": "system", "content": system_prompt},
|
| 358 |
+
{"role": "user", "content": user_prompt},
|
| 359 |
+
],
|
| 360 |
+
response_format={"type": "json_object"},
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
if not response:
|
| 364 |
+
# Fallback if API call fails
|
| 365 |
+
return AgentRequest(
|
| 366 |
+
question=question,
|
| 367 |
+
analysis_type=AnalysisType.OUT_OF_SCOPE,
|
| 368 |
+
target_columns=[],
|
| 369 |
+
is_follow_up=bool(previous_context),
|
| 370 |
+
previous_context=previous_context,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
try:
|
| 374 |
+
content = (
|
| 375 |
+
response.get("choices", [{}])[0].get("message", {}).get("content", "{}")
|
| 376 |
+
)
|
| 377 |
+
result = json.loads(content)
|
| 378 |
+
|
| 379 |
+
# Convert string column names to ColumnType enum values
|
| 380 |
+
target_columns = []
|
| 381 |
+
for col in result.get("target_columns", []):
|
| 382 |
+
try:
|
| 383 |
+
target_columns.append(ColumnType(col))
|
| 384 |
+
except ValueError:
|
| 385 |
+
pass # Skip invalid column types
|
| 386 |
+
|
| 387 |
+
return AgentRequest(
|
| 388 |
+
question=question,
|
| 389 |
+
analysis_type=AnalysisType(result.get("analysis_type", "out_of_scope")),
|
| 390 |
+
target_columns=target_columns,
|
| 391 |
+
is_follow_up=bool(previous_context),
|
| 392 |
+
previous_context=previous_context,
|
| 393 |
+
)
|
| 394 |
+
except (json.JSONDecodeError, ValueError) as e:
|
| 395 |
+
st.warning(f"Error parsing API response: {str(e)}")
|
| 396 |
+
return AgentRequest(
|
| 397 |
+
question=question,
|
| 398 |
+
analysis_type=AnalysisType.OUT_OF_SCOPE,
|
| 399 |
+
target_columns=[],
|
| 400 |
+
is_follow_up=bool(previous_context),
|
| 401 |
+
previous_context=previous_context,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
# Function to generate a response to the user's question
|
| 406 |
+
def generate_response(df: pd.DataFrame, request: AgentRequest) -> str:
|
| 407 |
+
"""
|
| 408 |
+
Generate a response to the user's question based on the request classification.
|
| 409 |
+
"""
|
| 410 |
+
# Get thinking mode setting from session state
|
| 411 |
+
show_thinking = st.session_state.get("show_thinking", True)
|
| 412 |
+
|
| 413 |
+
if request.analysis_type == AnalysisType.OUT_OF_SCOPE:
|
| 414 |
+
return "I'm sorry, but I can't answer that question based on the available customer support data."
|
| 415 |
+
|
| 416 |
+
# Prepare context with dataset information
|
| 417 |
+
data_description = f"Dataset contains {len(df)} customer support conversations."
|
| 418 |
+
|
| 419 |
+
if request.analysis_type == AnalysisType.QUANTITATIVE:
|
| 420 |
+
# For quantitative questions, prepare relevant statistics
|
| 421 |
+
stats_context = ""
|
| 422 |
+
if ColumnType.CATEGORY in request.target_columns:
|
| 423 |
+
category_counts = df["category"].value_counts().to_dict()
|
| 424 |
+
stats_context += f"\nCategory distribution: {json.dumps(category_counts)}"
|
| 425 |
+
|
| 426 |
+
if ColumnType.INTENT in request.target_columns:
|
| 427 |
+
intent_counts = df["intent"].value_counts().to_dict()
|
| 428 |
+
stats_context += f"\nIntent distribution: {json.dumps(intent_counts)}"
|
| 429 |
+
|
| 430 |
+
# If specific examples are requested, include sample data
|
| 431 |
+
if "example" in request.question.lower() or "show" in request.question.lower():
|
| 432 |
+
for col in request.target_columns:
|
| 433 |
+
if col.value in df.columns:
|
| 434 |
+
# Try to extract a specific value the user might be looking for
|
| 435 |
+
search_terms = [term.lower() for term in df[col.value].unique()]
|
| 436 |
+
for term in search_terms:
|
| 437 |
+
if term in request.question.lower():
|
| 438 |
+
examples = (
|
| 439 |
+
df[df[col.value].str.lower() == term]
|
| 440 |
+
.head(5)
|
| 441 |
+
.to_dict("records")
|
| 442 |
+
)
|
| 443 |
+
stats_context += f"\nExamples of {col.value}='{term}': {json.dumps(examples)}"
|
| 444 |
+
break
|
| 445 |
+
else: # QUALITATIVE
|
| 446 |
+
stats_context = ""
|
| 447 |
+
# For qualitative questions, prepare relevant data for summarization
|
| 448 |
+
for col in request.target_columns:
|
| 449 |
+
if col.value in df.columns:
|
| 450 |
+
unique_values = df[col.value].unique().tolist()
|
| 451 |
+
stats_context += (
|
| 452 |
+
f"\nUnique values for {col.value}: {json.dumps(unique_values)}"
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
# If there's a specific category/intent mentioned in the question
|
| 456 |
+
for value in unique_values:
|
| 457 |
+
if value.lower() in request.question.lower():
|
| 458 |
+
filtered_data = (
|
| 459 |
+
df[df[col.value] == value].head(10).to_dict("records")
|
| 460 |
+
)
|
| 461 |
+
stats_context += f"\nSample data for {col.value}='{value}': {json.dumps(filtered_data)}"
|
| 462 |
+
break
|
| 463 |
+
|
| 464 |
+
# Generate the response using LLM
|
| 465 |
+
system_prompt = f"""
|
| 466 |
+
You are a data analyst assistant that answers questions about a customer support dataset.
|
| 467 |
+
{data_description}
|
| 468 |
+
|
| 469 |
+
Use the following context to answer the question:
|
| 470 |
+
{stats_context}
|
| 471 |
+
|
| 472 |
+
Be concise and data-driven in your response. Mention specific numbers and patterns when appropriate.
|
| 473 |
+
If there isn't enough information to fully answer the question, acknowledge that limitation.
|
| 474 |
+
"""
|
| 475 |
+
|
| 476 |
+
previous_context = ""
|
| 477 |
+
if request.is_follow_up:
|
| 478 |
+
previous_context = (
|
| 479 |
+
f"\nThis is a follow-up to previous context: {request.previous_context}"
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
response = call_nebius_api(
|
| 483 |
+
[
|
| 484 |
+
{"role": "system", "content": system_prompt},
|
| 485 |
+
{
|
| 486 |
+
"role": "user",
|
| 487 |
+
"content": f"Question: {request.question}{previous_context}",
|
| 488 |
+
},
|
| 489 |
+
],
|
| 490 |
+
thinking_mode=show_thinking,
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
if not response:
|
| 494 |
+
return "I'm sorry, I encountered an error while processing your question. Please try again."
|
| 495 |
+
|
| 496 |
+
return (
|
| 497 |
+
response.get("choices", [{}])[0]
|
| 498 |
+
.get("message", {})
|
| 499 |
+
.get("content", "I couldn't generate a response. Please try again.")
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
# Function to plan and execute approach based on mode
|
| 504 |
+
def process_question(
|
| 505 |
+
df: pd.DataFrame, question: str, mode: str, previous_context: Optional[str] = None
|
| 506 |
+
) -> str:
|
| 507 |
+
"""
|
| 508 |
+
Process the user question using the specified planning mode.
|
| 509 |
+
"""
|
| 510 |
+
# Add thinking indicator to the UI with custom styling
|
| 511 |
+
thinking_placeholder = st.empty()
|
| 512 |
+
thinking_placeholder.markdown(
|
| 513 |
+
"""
|
| 514 |
+
<div class="thinking-indicator">
|
| 515 |
+
<div class="info-card">
|
| 516 |
+
βοΈ <strong>Agent is thinking...</strong> Analyzing your question and preparing response.
|
| 517 |
+
</div>
|
| 518 |
+
</div>
|
| 519 |
+
""",
|
| 520 |
+
unsafe_allow_html=True,
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
# Get thinking mode setting from session state
|
| 524 |
+
show_thinking = st.session_state.get("show_thinking", True)
|
| 525 |
+
|
| 526 |
+
if mode == "pre_planning":
|
| 527 |
+
# Pre-planning: First classify, then execute
|
| 528 |
+
request = classify_question(question, previous_context)
|
| 529 |
+
st.session_state.last_request = request
|
| 530 |
+
|
| 531 |
+
# Show classification if thinking is enabled
|
| 532 |
+
if show_thinking:
|
| 533 |
+
thinking_placeholder.markdown(
|
| 534 |
+
f"""
|
| 535 |
+
<div class="info-card">
|
| 536 |
+
βοΈ <strong>Agent classified this as a
|
| 537 |
+
<span style="color: var(--primary-color);">{request.analysis_type}</span> question</strong>
|
| 538 |
+
<br>π Target columns: {[col.value for col in request.target_columns]}
|
| 539 |
+
</div>
|
| 540 |
+
""",
|
| 541 |
+
unsafe_allow_html=True,
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
result = generate_response(df, request)
|
| 545 |
+
else: # reactive_planning
|
| 546 |
+
# Reactive planning: Let the LLM decide approach dynamically
|
| 547 |
+
system_prompt = """
|
| 548 |
+
You are a data analyst assistant that answers questions about a customer support dataset.
|
| 549 |
+
The dataset contains customer support conversations with categories, intents, customer messages, and agent responses.
|
| 550 |
+
|
| 551 |
+
Analyze the question and determine how to approach it:
|
| 552 |
+
1. Identify if it's asking for statistics, examples, summaries, or insights
|
| 553 |
+
2. Determine which aspects of the data are relevant
|
| 554 |
+
3. Generate a direct and concise response based on the data
|
| 555 |
+
|
| 556 |
+
If the question cannot be answered with the customer support dataset, politely explain that it's outside your scope.
|
| 557 |
+
"""
|
| 558 |
+
|
| 559 |
+
# Prepare dataset information
|
| 560 |
+
data_description = f"Dataset with {len(df)} records. "
|
| 561 |
+
data_description += f"Sample of 5 records: {df.sample(5).to_dict('records')}"
|
| 562 |
+
data_description += f"\nColumns: {df.columns.tolist()}"
|
| 563 |
+
|
| 564 |
+
# Include full distributions for categories and intents
|
| 565 |
+
# Check if the question is about distributions or frequencies
|
| 566 |
+
question_lower = question.lower()
|
| 567 |
+
include_distributions = any(
|
| 568 |
+
term in question_lower
|
| 569 |
+
for term in [
|
| 570 |
+
"distribution",
|
| 571 |
+
"frequency",
|
| 572 |
+
"count",
|
| 573 |
+
"how many",
|
| 574 |
+
"most frequent",
|
| 575 |
+
"most common",
|
| 576 |
+
"statistics",
|
| 577 |
+
]
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
# Always include category values
|
| 581 |
+
data_description += f"\nCategory values: {df['category'].unique().tolist()}"
|
| 582 |
+
|
| 583 |
+
# Include full distribution data if the question appears to need it
|
| 584 |
+
if include_distributions:
|
| 585 |
+
if "category" in question_lower or "categories" in question_lower:
|
| 586 |
+
category_counts = df["category"].value_counts().to_dict()
|
| 587 |
+
data_description += (
|
| 588 |
+
f"\nCategory distribution: {json.dumps(category_counts)}"
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
if "intent" in question_lower or "intents" in question_lower:
|
| 592 |
+
intent_counts = df["intent"].value_counts().to_dict()
|
| 593 |
+
data_description += (
|
| 594 |
+
f"\nIntent distribution: {json.dumps(intent_counts)}"
|
| 595 |
+
)
|
| 596 |
+
else:
|
| 597 |
+
# Just provide a sample of intents if not specifically asking about them
|
| 598 |
+
data_description += f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
|
| 599 |
+
else:
|
| 600 |
+
# Just provide a sample of intents
|
| 601 |
+
data_description += (
|
| 602 |
+
f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
context_info = ""
|
| 606 |
+
if previous_context:
|
| 607 |
+
context_info = f"\nThis is a follow-up to: {previous_context}"
|
| 608 |
+
|
| 609 |
+
response = call_nebius_api(
|
| 610 |
+
[
|
| 611 |
+
{"role": "system", "content": system_prompt},
|
| 612 |
+
{
|
| 613 |
+
"role": "user",
|
| 614 |
+
"content": f"Question: {question}\n\nDataset information: {data_description}{context_info}",
|
| 615 |
+
},
|
| 616 |
+
],
|
| 617 |
+
thinking_mode=show_thinking,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
if not response:
|
| 621 |
+
thinking_placeholder.empty()
|
| 622 |
+
return "I'm sorry, I encountered an error while processing your question. Please try again."
|
| 623 |
+
|
| 624 |
+
result = (
|
| 625 |
+
response.get("choices", [{}])[0]
|
| 626 |
+
.get("message", {})
|
| 627 |
+
.get("content", "I couldn't generate a response. Please try again.")
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
# Clear the thinking indicator
|
| 631 |
+
thinking_placeholder.empty()
|
| 632 |
+
|
| 633 |
+
# Process the result to separate thinking from final answer if needed
|
| 634 |
+
if show_thinking and "FINAL ANSWER:" in result:
|
| 635 |
+
parts = result.split("FINAL ANSWER:")
|
| 636 |
+
thinking = parts[0].strip()
|
| 637 |
+
final_answer = parts[1].strip()
|
| 638 |
+
|
| 639 |
+
# Display thinking and final answer with clear separation
|
| 640 |
+
with st.expander("π§ Agent's Thinking Process", expanded=True):
|
| 641 |
+
st.markdown(thinking)
|
| 642 |
+
|
| 643 |
+
return final_answer
|
| 644 |
+
else:
|
| 645 |
+
return result
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
# Main app interface
|
| 649 |
+
def main():
|
| 650 |
+
# Custom header
|
| 651 |
+
st.markdown(
|
| 652 |
+
"""
|
| 653 |
+
<div class="main-header">
|
| 654 |
+
<h1>π€ LLM-powered Data Analyst Agent</h1>
|
| 655 |
+
<p>Intelligent Analysis of Bitext Customer Support Dataset</p>
|
| 656 |
+
</div>
|
| 657 |
+
""",
|
| 658 |
+
unsafe_allow_html=True,
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
# Load dataset
|
| 662 |
+
with st.spinner("π Loading dataset..."):
|
| 663 |
+
df = load_bitext_dataset()
|
| 664 |
+
|
| 665 |
+
if df is None:
|
| 666 |
+
st.markdown(
|
| 667 |
+
"""
|
| 668 |
+
<div class="error-card">
|
| 669 |
+
<h3>β Dataset Loading Failed</h3>
|
| 670 |
+
<p>Failed to load dataset. Please check your internet connection and try again.</p>
|
| 671 |
+
</div>
|
| 672 |
+
""",
|
| 673 |
+
unsafe_allow_html=True,
|
| 674 |
+
)
|
| 675 |
+
return
|
| 676 |
+
|
| 677 |
+
# Success message with dataset info
|
| 678 |
+
st.markdown(
|
| 679 |
+
f"""
|
| 680 |
+
<div class="success-card">
|
| 681 |
+
<h3>β
Dataset Loaded Successfully</h3>
|
| 682 |
+
<p>Loaded <strong>{len(df):,}</strong> customer support records ready for analysis</p>
|
| 683 |
+
</div>
|
| 684 |
+
""",
|
| 685 |
+
unsafe_allow_html=True,
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
# Sidebar configuration
|
| 689 |
+
with st.sidebar:
|
| 690 |
+
st.markdown("## βοΈ Configuration")
|
| 691 |
+
|
| 692 |
+
# Planning mode selection with styling
|
| 693 |
+
st.markdown("### π§ Planning Mode")
|
| 694 |
+
planning_mode = st.radio(
|
| 695 |
+
"Select how the agent should approach questions:",
|
| 696 |
+
["pre_planning", "reactive_planning"],
|
| 697 |
+
format_func=lambda x: (
|
| 698 |
+
"π― Pre-planning + Execution"
|
| 699 |
+
if x == "pre_planning"
|
| 700 |
+
else "β‘ Reactive Dynamic Planning"
|
| 701 |
+
),
|
| 702 |
+
help="Choose between structured pre-analysis or dynamic reactive planning",
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
# Display current mode with badge
|
| 706 |
+
mode_class = (
|
| 707 |
+
"pre-planning" if planning_mode == "pre_planning" else "reactive-planning"
|
| 708 |
+
)
|
| 709 |
+
mode_name = (
|
| 710 |
+
"Pre-Planning" if planning_mode == "pre_planning" else "Reactive Planning"
|
| 711 |
+
)
|
| 712 |
+
st.markdown(
|
| 713 |
+
f"""
|
| 714 |
+
<div class="planning-badge {mode_class}">
|
| 715 |
+
{mode_name} Mode Active
|
| 716 |
+
</div>
|
| 717 |
+
""",
|
| 718 |
+
unsafe_allow_html=True,
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
st.markdown("---")
|
| 722 |
+
|
| 723 |
+
# Thinking process toggle
|
| 724 |
+
st.markdown("### π§ Agent Behavior")
|
| 725 |
+
if "show_thinking" not in st.session_state:
|
| 726 |
+
st.session_state.show_thinking = True
|
| 727 |
+
|
| 728 |
+
show_thinking = st.checkbox(
|
| 729 |
+
"π Show Agent's Thinking Process",
|
| 730 |
+
value=st.session_state.show_thinking,
|
| 731 |
+
help="Display the agent's reasoning and analysis steps",
|
| 732 |
+
)
|
| 733 |
+
st.session_state.show_thinking = show_thinking
|
| 734 |
+
|
| 735 |
+
st.markdown("---")
|
| 736 |
+
|
| 737 |
+
# Dataset stats in sidebar
|
| 738 |
+
st.markdown("### π Dataset Overview")
|
| 739 |
+
col1, col2 = st.columns(2)
|
| 740 |
+
with col1:
|
| 741 |
+
st.metric("π Total Records", f"{len(df):,}")
|
| 742 |
+
with col2:
|
| 743 |
+
st.metric("π Categories", len(df["category"].unique()))
|
| 744 |
+
|
| 745 |
+
st.metric("π― Unique Intents", len(df["intent"].unique()))
|
| 746 |
+
|
| 747 |
+
# Main content area
|
| 748 |
+
# Dataset information in an expandable section
|
| 749 |
+
with st.expander("π Dataset Information", expanded=False):
|
| 750 |
+
st.markdown("### Dataset Details")
|
| 751 |
+
|
| 752 |
+
# Create metrics row
|
| 753 |
+
metrics_col1, metrics_col2, metrics_col3, metrics_col4 = st.columns(4)
|
| 754 |
+
with metrics_col1:
|
| 755 |
+
st.metric("Total Records", f"{len(df):,}")
|
| 756 |
+
with metrics_col2:
|
| 757 |
+
st.metric("Columns", len(df.columns))
|
| 758 |
+
with metrics_col3:
|
| 759 |
+
st.metric("Categories", len(df["category"].unique()))
|
| 760 |
+
with metrics_col4:
|
| 761 |
+
st.metric("Intents", len(df["intent"].unique()))
|
| 762 |
+
|
| 763 |
+
st.markdown("### Sample Data")
|
| 764 |
+
st.dataframe(df.head(), use_container_width=True)
|
| 765 |
+
|
| 766 |
+
st.markdown("### Category Distribution")
|
| 767 |
+
st.bar_chart(df["category"].value_counts())
|
| 768 |
+
|
| 769 |
+
# Initialize session state for conversation history
|
| 770 |
+
if "conversation" not in st.session_state:
|
| 771 |
+
st.session_state.conversation = []
|
| 772 |
+
|
| 773 |
+
if "last_request" not in st.session_state:
|
| 774 |
+
st.session_state.last_request = None
|
| 775 |
+
|
| 776 |
+
# User input section
|
| 777 |
+
st.markdown("## π¬ Ask Your Question")
|
| 778 |
+
|
| 779 |
+
# Create a more prominent input area
|
| 780 |
+
user_question = st.text_input(
|
| 781 |
+
"What would you like to know about the customer support data?",
|
| 782 |
+
placeholder="e.g., What are the most common customer issues?",
|
| 783 |
+
key="user_input",
|
| 784 |
+
help="Ask questions about statistics, examples, or insights from the dataset",
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
# Submit button with custom styling
|
| 788 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 789 |
+
with col2:
|
| 790 |
+
submit_clicked = st.button("π Analyze Question", use_container_width=True)
|
| 791 |
+
|
| 792 |
+
if submit_clicked and user_question:
|
| 793 |
+
# Add user question to conversation
|
| 794 |
+
st.session_state.conversation.append({"role": "user", "content": user_question})
|
| 795 |
+
|
| 796 |
+
# Get previous context if this might be a follow-up
|
| 797 |
+
previous_context = None
|
| 798 |
+
if len(st.session_state.conversation) > 2:
|
| 799 |
+
# Get the previous assistant response
|
| 800 |
+
previous_context = st.session_state.conversation[-3]["content"]
|
| 801 |
+
|
| 802 |
+
# Process the question with enhanced loading indicator
|
| 803 |
+
with st.spinner("π€ Agent is analyzing your question..."):
|
| 804 |
+
response = process_question(
|
| 805 |
+
df, user_question, planning_mode, previous_context
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
# Add response to conversation
|
| 809 |
+
st.session_state.conversation.append({"role": "assistant", "content": response})
|
| 810 |
+
|
| 811 |
+
# Display conversation with styled messages
|
| 812 |
+
if st.session_state.conversation:
|
| 813 |
+
st.markdown("## π Conversation History")
|
| 814 |
+
|
| 815 |
+
for i, message in enumerate(st.session_state.conversation):
|
| 816 |
+
if message["role"] == "user":
|
| 817 |
+
st.markdown(
|
| 818 |
+
f"""
|
| 819 |
+
<div class="user-message">
|
| 820 |
+
<strong>π€ You:</strong> {message['content']}
|
| 821 |
+
</div>
|
| 822 |
+
""",
|
| 823 |
+
unsafe_allow_html=True,
|
| 824 |
+
)
|
| 825 |
+
else:
|
| 826 |
+
st.markdown(
|
| 827 |
+
f"""
|
| 828 |
+
<div class="assistant-message">
|
| 829 |
+
<strong>π€ Agent:</strong> {message['content']}
|
| 830 |
+
</div>
|
| 831 |
+
""",
|
| 832 |
+
unsafe_allow_html=True,
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
if i < len(st.session_state.conversation) - 1: # Not the last message
|
| 836 |
+
st.markdown("---")
|
| 837 |
+
|
| 838 |
+
# Clear conversation button
|
| 839 |
+
if st.button("ποΈ Clear Conversation"):
|
| 840 |
+
st.session_state.conversation = []
|
| 841 |
+
st.rerun()
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
if __name__ == "__main__":
|
| 845 |
+
main()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.32.0
|
| 2 |
+
pandas==2.1.3
|
| 3 |
+
datasets==2.17.0
|
| 4 |
+
openai==1.12.0
|
| 5 |
+
pydantic==2.5.2
|
| 6 |
+
python-dotenv==1.0.0
|
| 7 |
+
requests==2.31.0
|