File size: 2,241 Bytes
2cabb35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
from peft import PeftModel
from transformers import RobertaTokenizer, T5ForConditionalGeneration
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "Salesforce/codet5-base"
new_model_id = 'Salesforce/codet5-base-multi-sum'
tokenizer = RobertaTokenizer.from_pretrained(model_id, torch_dtype=torch.float16, device_map=device)
old_model = T5ForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map=device)
old_model.eval()
# base_model = T5ForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map=device)
# fine_tuned_model = PeftModel.from_pretrained(base_model, '/kaggle/input/codet5-fine-tuned/pytorch/v1/1/codet5-finetuned', is_trainable=False)
fine_tuned_model = T5ForConditionalGeneration.from_pretrained(new_model_id, torch_dtype=torch.float16, device_map=device)
fine_tuned_model.eval()

# Function to generate predictions
def generate_docstring(code, max_new_tokens, model_choice):
    tokenized_input = tokenizer(
        code,
        padding="max_length",
        truncation=True,
        max_length=512,
        return_tensors="pt"
    ).to(device)
    
    if model_choice == "Base Model":
        model_to_use = old_model
    else:
        model_to_use = fine_tuned_model

    output = model_to_use.generate(
        input_ids=tokenized_input['input_ids'],
        attention_mask=tokenized_input['attention_mask'],
        max_new_tokens=max_new_tokens,
        num_beams=5,
        length_penalty=1.0,
        early_stopping=True
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Create the Gradio UI
demo = gr.Interface(
    fn=generate_docstring,
    inputs=[
        gr.Textbox(lines=6, label="Enter Code"),
        gr.Slider(10, 300, value=100, step=10, label="Max new tokens"),
        gr.Dropdown(label="Model Version", choices=["Base Model", "Fine-tuned Model"], value="Fine-tuned Model")
    ],
    outputs=gr.Text(label="Generated Docstring"),
    title="🧠 CodeT5: Docstring Generator",
    description="Select between the base and fine-tuned CodeT5 model to generate docstrings from code input."
)

# Launch with Gradio Sharing Public Link
demo.launch(share=True)