File size: 7,471 Bytes
eb3d3f0
efbd74c
eb3d3f0
0983def
eb3d3f0
 
 
efbd74c
 
eb3d3f0
 
0983def
eb3d3f0
 
 
 
 
 
 
 
 
7e2c1f5
eb3d3f0
 
 
 
 
 
 
7e2c1f5
 
 
accfefd
7e2c1f5
accfefd
7e2c1f5
accfefd
 
efbd74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716658c
efbd74c
 
77c7f70
b7b4136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c7f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b4136
77c7f70
 
 
 
fc2d708
c6b8538
 
 
 
 
 
 
 
 
fc2d708
c6b8538
 
 
 
 
 
fc2d708
 
 
 
c6b8538
 
 
 
 
 
77c7f70
 
 
 
 
 
 
 
 
c6b8538
77c7f70
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Face Detection-Based AI Automation of Lab Tests
# UI: Clean table, multilingual summary, PDF-ready

import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from fpdf import FPDF
import os

mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)

def estimate_heart_rate(frame, landmarks):
    h, w, _ = frame.shape
    forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
    mask = np.zeros((h, w), dtype=np.uint8)
    pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32)
    cv2.fillConvexPoly(mask, pts, 255)
    green_channel = cv2.split(frame)[1]
    mean_intensity = cv2.mean(green_channel, mask=mask)[0]
    heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
    return heart_rate

def estimate_spo2_rr(heart_rate):
    spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
    rr = int(12 + abs(heart_rate % 5 - 2))
    return spo2, rr

def get_risk_color(value, normal_range):
    low, high = normal_range
    if value < low:
        return ("Low", "🔻", "#FFCCCC")
    elif value > high:
        return ("High", "🔺", "#FFE680")
    else:
        return ("Normal", "✅", "#CCFFCC")

def generate_pdf_report(image, results_dict, summary_text):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", "B", 16)
    pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C')

    if image is not None:
        img_path = "patient_face.jpg"
        cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
        pdf.image(img_path, x=80, y=25, w=50)
        os.remove(img_path)
        pdf.ln(60)

    pdf.set_font("Arial", "B", 12)
    pdf.cell(0, 10, "Results Summary", ln=True)
    pdf.set_font("Arial", "", 10)

    for key, val in results_dict.items():
        if isinstance(val, (int, float)):
            pdf.cell(0, 8, f"{key}: {val}", ln=True)

    pdf.ln(5)
    pdf.set_font("Arial", "B", 12)
    pdf.cell(0, 10, "AI Summary (English)", ln=True)
    pdf.set_font("Arial", "", 10)
    for line in summary_text.split("<li>"):
        if "</li>" in line:
            clean = line.split("</li>")[0].strip()
            pdf.multi_cell(0, 8, f"- {clean}")

    output_path = "SL_Diagnostics_Face_Scan_Report.pdf"
    pdf.output(output_path)
    return output_path

def infer_lab_results(image, landmarks):
    h, w, _ = image.shape
    forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)]
    mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY))
    skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1])

    return {
        'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1),
        'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1),
        'Platelets': int(150 + (mean_intensity / 255.0) * 150),
        'Iron': round(40 + (skin_redness / 50.0) * 40, 1),
        'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1),
        'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1),
        'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2),
        'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2),
        'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2),
        'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2),
        'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60),
        'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2),
        'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1),
        'Heart Rate': estimate_heart_rate(image, landmarks),
        'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1]
    }

# Gradio UI (app launcher)
def app():
    def process(image):
        if image is None:
            return "Please upload a face image.", None, None

        frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        result = face_mesh.process(frame_rgb)
        if not result.multi_face_landmarks:
            return "Face not detected.", None, None

        landmarks = result.multi_face_landmarks[0].landmark
        heart_rate = estimate_heart_rate(frame_rgb, landmarks)
        spo2, rr = estimate_spo2_rr(heart_rate)

        results_dict = infer_lab_results(frame_rgb, landmarks)

        summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>"  # Placeholder
        pdf_path = generate_pdf_report(image, results_dict, summary_text)

                                table_html = "<table style='width:100%;border-collapse:collapse;margin-top:10px;'>"
        table_html += "<tr><th style='border:1px solid #ccc;padding:6px;'>Test</th><th style='border:1px solid #ccc;padding:6px;'>Result</th><th style='border:1px solid #ccc;padding:6px;'>Status</th></tr>"
        for k, v in results_dict.items():
            if k in ["Hemoglobin", "WBC Count", "Platelets"]:
                status, icon, bg = get_risk_color(v, (13.5, 17.5) if k == "Hemoglobin" else (4.0, 11.0) if k == "WBC Count" else (150, 450))
                table_html += f"<tr style='background:{bg}'><td style='border:1px solid #ccc;padding:6px;'>{k}</td><td style='border:1px solid #ccc;padding:6px;'>{v}</td><td style='border:1px solid #ccc;padding:6px;'>{icon} {status}</td></tr>"
            else:
                table_html += f"<tr><td style='border:1px solid #ccc;padding:6px;'>{k}</td><td style='border:1px solid #ccc;padding:6px;'>{v}</td><td style='border:1px solid #ccc;padding:6px;'>-</td></tr>"
        table_html += "</table>"

        summary_block = """
        <div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#f9f9f9;'>
          <h4>📝 Summary in Your Language</h4>
          <details><summary><b>Hindi</b></summary>
          <ul><li>आपका हीमोग्लोबिन थोड़ा कम है — यह हल्के एनीमिया का संकेत हो सकता है। कृपया CBC और आयरन टेस्ट करवाएं।</li></ul>
          </details>
          <details><summary><b>Telugu</b></summary>
          <ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul>
          </details>
        </div>"""
          <details><summary><b>Telugu</b></summary>
          <ul><li>మీ హిమోగ్లోబిన్ తక్కువగా ఉంది — ఇది అనీమియా సూచించవచ్చు. CBC, Iron పరీక్షలు చేయించండి.</li></ul>
          </details>
        </div>"""

        full_html = table_html + summary_block
        return full_html, frame_rgb, pdf_path

    with gr.Blocks() as demo:
        gr.Markdown("""# 🧠 Face-Based Lab Test AI Report""")
        with gr.Row():
            with gr.Column():
                image = gr.Image(label="📸 Upload Face", type="numpy")
                button = gr.Button("🔍 Run Analysis")
                pdf_output = gr.File(label="📄 Download Report")
            with gr.Column():
                note = gr.HTML(label="AI-Predicted Test Results Table")
                preview = gr.Image(label="Scan Preview")

        button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output])

    demo.launch()

app()