# Face Detection-Based AI Automation of Lab Tests # UI: Clean table, multilingual summary, PDF-ready import gradio as gr import cv2 import numpy as np import mediapipe as mp from fpdf import FPDF import os mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) def estimate_heart_rate(frame, landmarks): h, w, _ = frame.shape forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] mask = np.zeros((h, w), dtype=np.uint8) pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) cv2.fillConvexPoly(mask, pts, 255) green_channel = cv2.split(frame)[1] mean_intensity = cv2.mean(green_channel, mask=mask)[0] heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) return heart_rate def estimate_spo2_rr(heart_rate): spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) rr = int(12 + abs(heart_rate % 5 - 2)) return spo2, rr def get_risk_color(value, normal_range): low, high = normal_range if value < low: return ("Low", "🔻", "#FFCCCC") elif value > high: return ("High", "🔺", "#FFE680") else: return ("Normal", "✅", "#CCFFCC") def generate_pdf_report(image, results_dict, summary_text): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", "B", 16) pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') if image is not None: img_path = "patient_face.jpg" cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) pdf.image(img_path, x=80, y=25, w=50) os.remove(img_path) pdf.ln(60) pdf.set_font("Arial", "B", 12) pdf.cell(0, 10, "Results Summary", ln=True) pdf.set_font("Arial", "", 10) for key, val in results_dict.items(): if isinstance(val, (int, float)): pdf.cell(0, 8, f"{key}: {val}", ln=True) pdf.ln(5) pdf.set_font("Arial", "B", 12) pdf.cell(0, 10, "AI Summary (English)", ln=True) pdf.set_font("Arial", "", 10) for line in summary_text.split("
  • "): if "
  • " in line: clean = line.split("")[0].strip() pdf.multi_cell(0, 8, f"- {clean}") output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" pdf.output(output_path) return output_path def infer_lab_results(image, landmarks): h, w, _ = image.shape forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)] mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY)) skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1]) return { 'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1), 'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1), 'Platelets': int(150 + (mean_intensity / 255.0) * 150), 'Iron': round(40 + (skin_redness / 50.0) * 40, 1), 'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1), 'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1), 'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2), 'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2), 'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2), 'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2), 'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60), 'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2), 'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1), 'Heart Rate': estimate_heart_rate(image, landmarks), 'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1] } # Gradio UI (app launcher) def app(): def process(image): if image is None: return "Please upload a face image.", None, None frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) result = face_mesh.process(frame_rgb) if not result.multi_face_landmarks: return "Face not detected.", None, None landmarks = result.multi_face_landmarks[0].landmark heart_rate = estimate_heart_rate(frame_rgb, landmarks) spo2, rr = estimate_spo2_rr(heart_rate) results_dict = infer_lab_results(frame_rgb, landmarks) summary_text = "
  • Your hemoglobin is a bit low...
  • Consider iron tests.
  • " # Placeholder pdf_path = generate_pdf_report(image, results_dict, summary_text) return "Preview complete. You can download your report.", frame_rgb, pdf_path with gr.Blocks() as demo: gr.Markdown("""# 🧠 Face-Based Lab Test AI Report""") with gr.Row(): with gr.Column(): image = gr.Image(label="📸 Upload Face", type="numpy") button = gr.Button("🔍 Run Analysis") pdf_output = gr.File(label="📄 Download Report") with gr.Column(): note = gr.Textbox(label="Status") preview = gr.Image(label="Scan Preview") button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output]) demo.launch() app()