KikoDM commited on
Commit
e813b86
·
1 Parent(s): be4e77b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -39
app.py CHANGED
@@ -2,61 +2,28 @@ import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
  import os
5
- #import cv2
6
  from tqdm import tqdm
7
  import tensorflow as tf
8
  from tensorflow import keras
9
  from keras.utils import np_utils
10
- #from tensorflow.python.keras.preprocessing import image
11
- #from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
12
  from keras.preprocessing import image
13
  from keras.preprocessing.image import ImageDataGenerator
14
- #from skimage import io
15
  import matplotlib.pyplot as plt
16
- #from tensorflow.python.keras.utils import np_utils
17
- import pickle
18
- #with Path("modelo_entrenado.pkl").open("br")as f:
19
- # new_model=pickle.load(f)
20
- #new_model = pickle.load(open("modelo_entrenado.pkl", 'rb'))
21
 
22
  new_model = tf.keras.models.load_model('modelo_entrenado.h5')
23
  objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
24
  y_pos = np.arange(len(objects))
25
- print(y_pos)
26
-
27
-
28
-
29
- def emotion_analysis(emotions):
30
- objects = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
31
- y_pos = np.arange(len(objects))
32
- plt.bar(y_pos, emotions, align='center', alpha=0.9)
33
- plt.tick_params(axis='x', which='both', pad=10,width=4,length=10)
34
- plt.xticks(y_pos, objects)
35
- plt.ylabel('percentage')
36
- plt.title('emotion')
37
- plt.show()
38
 
39
 
40
  def predict_image(pic):
41
  img = image.load_img(pic, grayscale=True, target_size=(48, 48))
42
- #show_img=image.load_img(pic, grayscale=False, target_size=(200, 200))
43
- #pic = pic.reshape(-1,48, 48,1])
44
  x = image.img_to_array(img)
45
 
46
  x = np.expand_dims(x, axis = 0)
47
 
48
  x /= 255
49
- #x = x.reshape(1,48,48,1)
50
- custom = new_model.predict(x)
51
-
52
- #emotion_analysis(custom[0])
53
-
54
- #x = np.array(x, 'float32')
55
- #x = x.reshape([48, 48]);
56
 
57
- #plt.gray()
58
- #plt.imshow(show_img)
59
- #plt.show()
60
 
61
  m=0.000000000000000000001
62
  a=custom[0]
@@ -70,17 +37,16 @@ def predict_image(pic):
70
  iface = gr.Interface(
71
  predict_image,
72
  [
73
- #gr.inputs.Image(shape=None, image_mode="RGB", invert_colors=False, source="upload", tool="editor", type="numpy", label=None, optional=False)
74
- #gr.inputs.Image(source="upload",shape=(48,48))
75
- gr.inputs.Image(source="upload",type="filepath")
76
  ],
77
 
78
  "text",
79
 
80
 
81
  interpretation="default",
82
- title = 'FER',
83
- description = 'El ',
84
  examples=[["28860.png"], ["28790.png"], ["28953.png"], ["30369.png"], ["28722.png"], ["29026.png"], ["28857.png"], ["28795.png"], ["28880.png"], ["28735.png"], ["28757.png"], ["28727.png"], ["28874.png"], ["28723.png"]],
85
  theme = 'grass'
86
  )
 
2
  import pandas as pd
3
  import numpy as np
4
  import os
 
5
  from tqdm import tqdm
6
  import tensorflow as tf
7
  from tensorflow import keras
8
  from keras.utils import np_utils
 
 
9
  from keras.preprocessing import image
10
  from keras.preprocessing.image import ImageDataGenerator
 
11
  import matplotlib.pyplot as plt
 
 
 
 
 
12
 
13
  new_model = tf.keras.models.load_model('modelo_entrenado.h5')
14
  objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
15
  y_pos = np.arange(len(objects))
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
  def predict_image(pic):
19
  img = image.load_img(pic, grayscale=True, target_size=(48, 48))
 
 
20
  x = image.img_to_array(img)
21
 
22
  x = np.expand_dims(x, axis = 0)
23
 
24
  x /= 255
 
 
 
 
 
 
 
25
 
26
+ custom = new_model.predict(x)
 
 
27
 
28
  m=0.000000000000000000001
29
  a=custom[0]
 
37
  iface = gr.Interface(
38
  predict_image,
39
  [
40
+
41
+ gr.inputs.Image(source="upload",type="filepath", label="Imagen")
 
42
  ],
43
 
44
  "text",
45
 
46
 
47
  interpretation="default",
48
+ title = 'FER - Facial Expression Recognition',
49
+ description = 'Probablemente nos daremos cuenta de que muchas veces se miente cuando se tratan las emociones, ¿pero nuestra cara también miente? https://saturdays.ai/2022/03/16/detectando-emociones-mediante-imagenes-con-inteligencia-artificial/ ',
50
  examples=[["28860.png"], ["28790.png"], ["28953.png"], ["30369.png"], ["28722.png"], ["29026.png"], ["28857.png"], ["28795.png"], ["28880.png"], ["28735.png"], ["28757.png"], ["28727.png"], ["28874.png"], ["28723.png"]],
51
  theme = 'grass'
52
  )