Spaces:
Runtime error
Runtime error
File size: 2,846 Bytes
df02b79 31d4b6e 3501c5c 31d4b6e 5c53740 3501c5c 990a101 3501c5c 990a101 3501c5c 31d4b6e 7f642aa 9270cd4 31d4b6e 9270cd4 df02b79 1d57e98 647b838 df02b79 19aa63a 990a101 19aa63a df02b79 19aa63a df02b79 19aa63a df02b79 1e52d4f df02b79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
#import sys
#import os
import pandas as pd
import numpy as np
#import cv2
#import matplotlib.pyplot as plt
#from PIL import Image
#import keras
#import tensorflow as tf
#from keras.models import Model
#from keras.optimizers import Adam
#from keras.applications.vgg16 import VGG16, preprocess_input
#from keras.applications.vgg19 import VGG19, preprocess_input
#from keras.preprocessing.image import ImageDataGenerator
#from keras.callbacks import ModelCheckpoint, EarlyStopping
#from keras.layers import Dense, Dropout, Flatten, MaxPooling2D, Conv2D
#from pathlib import Path
#from sklearn.metrics import accuracy_score
from keras.models import model_from_json
#from keras.preprocessing import image
#from keras.applications.vgg16 import VGG16, preprocess_input
#import heapq
#file = open("focusondriving.json", 'r')
#model_json2 = file.read()
#file.close()
#loaded_model = model_from_json(model_json2)
loaded_model = model_from_json("focusondriving.json")
#loaded_model.load_weights("focusondriving.h5")
class_dict = {
'c0': 'hands on the wheel',
'c1': 'mobile in right hand',
'c2': 'talking on the phone with right hand',
'c3': "mobile in left hand",
'c4': 'talking on the phone with left hand',
'c5': 'touching at the dash',
'c6': 'drinking',
'c7': 'reaching behind',
'c8': 'touching the head',
'c9': 'looking to the side'
}
def predict_image(pic):
# img = image.load_img(pic, target_size=(224, 224))
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
# x = preprocess_input(x)
# preds = loaded_model.predict(x)
# preds = list(preds[0])
#list_desc_order = heapq.nlargest(2, range(len(preds)), key=preds.__getitem__)
#result1 = f'c{list_desc_order[0]}'
#result2 = '-'
#result2_ = 0
#if preds[list_desc_order[1]] > 0.3:
# result2 = f'c{list_desc_order[1]}'
# result2_ = round(preds[list_desc_order[1]], 2)
#txt = f"category {directory} result 1 {result1} {round(preds[list_desc_order[0]],2)} | result2 {result2} {result2_}"
#txt = f"categoria {directory}"
#score = round(preds[list_desc_order[0]], 2)*100
#score = int(score)
#txt2 = f"resultado: {class_dict.get(result1)} probabilidad {score}%"
txt3="pepe"
return txt3
iface = gr.Interface(
predict_image,
[
gr.inputs.Image(source="upload",type="filepath", label="Imagen")
],
"text",
interpretation="default",
title = 'FER - Facial Expression Recognition',
description = 'Probablemente nos daremos cuenta de que muchas veces se miente cuando se tratan las emociones, ¿pero nuestra cara también miente? https://saturdays.ai/2022/03/16/detectando-emociones-mediante-imagenes-con-inteligencia-artificial/ ',
theme = 'grass'
)
iface.launch() |