KikoDM commited on
Commit
5900a6d
·
1 Parent(s): e9f54cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -21
app.py CHANGED
@@ -21,7 +21,7 @@ import numpy as np
21
 
22
 
23
  from keras.models import model_from_json
24
- #from keras.preprocessing import image
25
  #from keras.applications.vgg16 import VGG16, preprocess_input
26
  #import heapq
27
 
@@ -30,7 +30,7 @@ model_json2 = file.read()
30
  #file.close()
31
  loaded_model = model_from_json(model_json2)
32
  #loaded_model = model_from_json("focusondriving.json")
33
- loaded_model.load_weights("focusondriving.h5")
34
 
35
  class_dict = {
36
  'c0': 'hands on the wheel',
@@ -46,26 +46,26 @@ class_dict = {
46
  }
47
 
48
  def predict_image(pic):
49
- # img = image.load_img(pic, target_size=(224, 224))
50
- # x = image.img_to_array(img)
51
- # x = np.expand_dims(x, axis=0)
52
- # x = preprocess_input(x)
53
- # preds = loaded_model.predict(x)
54
- # preds = list(preds[0])
55
 
56
- #list_desc_order = heapq.nlargest(2, range(len(preds)), key=preds.__getitem__)
57
- #result1 = f'c{list_desc_order[0]}'
58
- #result2 = '-'
59
- #result2_ = 0
60
- #if preds[list_desc_order[1]] > 0.3:
61
- # result2 = f'c{list_desc_order[1]}'
62
- # result2_ = round(preds[list_desc_order[1]], 2)
63
- #txt = f"category {directory} result 1 {result1} {round(preds[list_desc_order[0]],2)} | result2 {result2} {result2_}"
64
- #txt = f"categoria {directory}"
65
 
66
- #score = round(preds[list_desc_order[0]], 2)*100
67
- #score = int(score)
68
- #txt2 = f"resultado: {class_dict.get(result1)} probabilidad {score}%"
69
  txt3="pepe"
70
  return txt3
71
 
@@ -82,7 +82,7 @@ iface = gr.Interface(
82
 
83
 
84
  interpretation="default",
85
- title = 'FER - Facial Expression Recognition',
86
  description = 'Probablemente nos daremos cuenta de que muchas veces se miente cuando se tratan las emociones, ¿pero nuestra cara también miente? https://saturdays.ai/2022/03/16/detectando-emociones-mediante-imagenes-con-inteligencia-artificial/ ',
87
 
88
  theme = 'grass'
 
21
 
22
 
23
  from keras.models import model_from_json
24
+ from keras.preprocessing import image
25
  #from keras.applications.vgg16 import VGG16, preprocess_input
26
  #import heapq
27
 
 
30
  #file.close()
31
  loaded_model = model_from_json(model_json2)
32
  #loaded_model = model_from_json("focusondriving.json")
33
+ #loaded_model.load_weights("focusondriving.h5")
34
 
35
  class_dict = {
36
  'c0': 'hands on the wheel',
 
46
  }
47
 
48
  def predict_image(pic):
49
+ img = image.load_img(pic, target_size=(224, 224))
50
+ x = image.img_to_array(img)
51
+ x = np.expand_dims(x, axis=0)
52
+ #x = preprocess_input(x)
53
+ preds = loaded_model.predict(x)
54
+ preds = list(preds[0])
55
 
56
+ list_desc_order = heapq.nlargest(2, range(len(preds)), key=preds.__getitem__)
57
+ result1 = f'c{list_desc_order[0]}'
58
+ result2 = '-'
59
+ result2_ = 0
60
+ if preds[list_desc_order[1]] > 0.3:
61
+ result2 = f'c{list_desc_order[1]}'
62
+ result2_ = round(preds[list_desc_order[1]], 2)
63
+ txt = f"category {directory} result 1 {result1} {round(preds[list_desc_order[0]],2)} | result2 {result2} {result2_}"
64
+ txt = f"categoria {directory}"
65
 
66
+ score = round(preds[list_desc_order[0]], 2)*100
67
+ score = int(score)
68
+ txt2 = f"resultado: {class_dict.get(result1)} probabilidad {score}%"
69
  txt3="pepe"
70
  return txt3
71
 
 
82
 
83
 
84
  interpretation="default",
85
+ title = 'FER - Facial Expression Recognitionllll',
86
  description = 'Probablemente nos daremos cuenta de que muchas veces se miente cuando se tratan las emociones, ¿pero nuestra cara también miente? https://saturdays.ai/2022/03/16/detectando-emociones-mediante-imagenes-con-inteligencia-artificial/ ',
87
 
88
  theme = 'grass'