KikoDM commited on
Commit
cf5f013
·
1 Parent(s): 53c609d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -17
app.py CHANGED
@@ -1,14 +1,7 @@
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
- #import os
5
- #from tqdm import tqdm
6
- #import tensorflow as tf
7
- #from tensorflow import keras
8
- #from keras.utils import np_utils
9
- #from keras.preprocessing import image
10
- #from keras.preprocessing.image import ImageDataGenerator
11
- #import matplotlib.pyplot as plt
12
  from keras.models import model_from_json
13
  from keras.preprocessing import image
14
  from keras.applications.vgg16 import VGG16, preprocess_input
@@ -19,8 +12,7 @@ file.close()
19
  loaded_model = model_from_json(model_json2)
20
  loaded_model.load_weights("womanlife.h5")
21
 
22
- #new_model = tf.keras.models.load_model('modelo_entrenado.h5')
23
- objects = ('There is a benign nodule', 'Normal Breast', 'There is a malignant nodule')
24
  y_pos = np.arange(len(objects))
25
 
26
 
@@ -32,13 +24,6 @@ def predict_image(pic):
32
  x = np.expand_dims(x, axis=0)
33
  x = preprocess_input(x)
34
 
35
- #img = image.load_img(pic, grayscale=True, target_size=(48, 48))
36
- #x = image.img_to_array(img)
37
-
38
- #x = np.expand_dims(x, axis = 0)
39
-
40
- #x /= 255
41
-
42
  custom = loaded_model.predict(x)
43
 
44
  m=0.000000000000000000001
 
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
+
 
 
 
 
 
 
 
5
  from keras.models import model_from_json
6
  from keras.preprocessing import image
7
  from keras.applications.vgg16 import VGG16, preprocess_input
 
12
  loaded_model = model_from_json(model_json2)
13
  loaded_model.load_weights("womanlife.h5")
14
 
15
+ objects = ('There is a benign nodule', 'There is a malignant nodule', 'Normal Breast')
 
16
  y_pos = np.arange(len(objects))
17
 
18
 
 
24
  x = np.expand_dims(x, axis=0)
25
  x = preprocess_input(x)
26
 
 
 
 
 
 
 
 
27
  custom = loaded_model.predict(x)
28
 
29
  m=0.000000000000000000001