Spaces:
Runtime error
Runtime error
marcossalinas
commited on
Commit
·
cd0c3b0
1
Parent(s):
5aa3885
Primer commit
Browse files- README.md +9 -12
- desertIArag/303/263n.png +0 -0
- desertificacion_ai.py +360 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
| 1 |
+
# desertificacion-AI-Streamlit
|
| 2 |
+
|
| 3 |
+
## AI Saturdays - I Edición Zaragoza - CURSO BÁSICO DE IA
|
| 4 |
+
|
| 5 |
+
### Streamlit app
|
| 6 |
+
|
| 7 |
+
Enlace para lanzar la aplicación:
|
| 8 |
+
|
| 9 |
+
https://share.streamlit.io/desertificacion-ai/desertificacion-ai-streamlit/main/desertificacion_ai.py
|
|
|
|
|
|
|
|
|
desertIArag/303/263n.png
ADDED
|
desertificacion_ai.py
ADDED
|
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import skimage.io as skio
|
| 5 |
+
import streamlit as st
|
| 6 |
+
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from rasterio import plot
|
| 9 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 10 |
+
from sklearn.metrics import mean_squared_error
|
| 11 |
+
|
| 12 |
+
# Image.MAX_IMAGE_PIXELS = None
|
| 13 |
+
|
| 14 |
+
st.set_page_config(
|
| 15 |
+
page_title='Aplicación megachula',
|
| 16 |
+
page_icon=':cactus:',
|
| 17 |
+
layout='centered'
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Título
|
| 21 |
+
# ======
|
| 22 |
+
|
| 23 |
+
image = Image.open('desertIAragón.png')
|
| 24 |
+
st.image(image, width=700)
|
| 25 |
+
|
| 26 |
+
st.title('Desertificación en Aragón')
|
| 27 |
+
st.subheader('AI Saturdays - I Edición Zaragoza - CURSO BÁSICO DE IA')
|
| 28 |
+
|
| 29 |
+
# Librerías
|
| 30 |
+
# =========
|
| 31 |
+
|
| 32 |
+
st.markdown('---')
|
| 33 |
+
with st.expander('Librerías'):
|
| 34 |
+
st.markdown("""
|
| 35 |
+
* matplotlib   3.5.1
|
| 36 |
+
* numpy     1.22.2
|
| 37 |
+
* PIL         9.0.1
|
| 38 |
+
* rasterio     1.2.10
|
| 39 |
+
* scikit-image   0.19.2
|
| 40 |
+
* scikit-learn   1.0.2
|
| 41 |
+
* streamlit     1.5.1
|
| 42 |
+
""")
|
| 43 |
+
|
| 44 |
+
# Imágenes satelitales
|
| 45 |
+
# ====================
|
| 46 |
+
|
| 47 |
+
@st.cache
|
| 48 |
+
def lee_imagenes():
|
| 49 |
+
img_name_1 = 'imagen_1.tif'
|
| 50 |
+
img_name_2 = 'imagen_2.tif'
|
| 51 |
+
img_name_3 = 'imagen_3.tif'
|
| 52 |
+
img_name_4 = 'imagen_4.tif'
|
| 53 |
+
img_name_5 = 'imagen_5.tif'
|
| 54 |
+
img_name_6 = 'imagen_6.tif'
|
| 55 |
+
|
| 56 |
+
img1 = skio.imread(img_name_1, plugin='pil')
|
| 57 |
+
img2 = skio.imread(img_name_2, plugin='pil')
|
| 58 |
+
img3 = skio.imread(img_name_3, plugin='pil')
|
| 59 |
+
img4 = skio.imread(img_name_4, plugin='pil')
|
| 60 |
+
img5 = skio.imread(img_name_5, plugin='pil')
|
| 61 |
+
img6 = skio.imread(img_name_6, plugin='pil')
|
| 62 |
+
|
| 63 |
+
return img1, img2, img3, img4, img5, img6
|
| 64 |
+
|
| 65 |
+
img1 = lee_imagenes()[0]
|
| 66 |
+
img2 = lee_imagenes()[1]
|
| 67 |
+
img3 = lee_imagenes()[2]
|
| 68 |
+
img4 = lee_imagenes()[3]
|
| 69 |
+
img5 = lee_imagenes()[4]
|
| 70 |
+
img6 = lee_imagenes()[5]
|
| 71 |
+
|
| 72 |
+
# @st.cache
|
| 73 |
+
def muestra_imagenes():
|
| 74 |
+
st.markdown('---')
|
| 75 |
+
st.subheader('Imágenes satelitales')
|
| 76 |
+
|
| 77 |
+
col11, col12 = st.columns(2)
|
| 78 |
+
with col11:
|
| 79 |
+
st.write('1 - 20210316 - Tamaño:', img1.shape)
|
| 80 |
+
st.image(img1, width=350, clamp=True)
|
| 81 |
+
with col12:
|
| 82 |
+
st.write('2 - 20210405 - Tamaño:', img1.shape)
|
| 83 |
+
st.image(img2, width=350, clamp=True)
|
| 84 |
+
|
| 85 |
+
col21, col22 = st.columns(2)
|
| 86 |
+
with col21:
|
| 87 |
+
st.write('3 - 20210505 - Tamaño:', img1.shape)
|
| 88 |
+
st.image(img3, width=350, clamp=True)
|
| 89 |
+
with col22:
|
| 90 |
+
st.write('4 - 20210525 - Tamaño:', img1.shape)
|
| 91 |
+
st.image(img4, width=350, clamp=True)
|
| 92 |
+
|
| 93 |
+
col31, col32 = st.columns(2)
|
| 94 |
+
with col31:
|
| 95 |
+
st.write('5 - 20210614 - Tamaño:', img1.shape)
|
| 96 |
+
st.image(img5, width=350, clamp=True)
|
| 97 |
+
with col32:
|
| 98 |
+
st.write('6 - 20210624 - Tamaño:', img1.shape)
|
| 99 |
+
st.image(img6, width=350, clamp=True)
|
| 100 |
+
|
| 101 |
+
muestra_imagenes()
|
| 102 |
+
|
| 103 |
+
# Banda lateral
|
| 104 |
+
# =============
|
| 105 |
+
|
| 106 |
+
st.sidebar.markdown('# Cuadrícula de estudio')
|
| 107 |
+
st.sidebar.markdown("""
|
| 108 |
+
Cuadrícula de estudio dentro de la imagen, con un ancho y un alto en píxeles según lo indicado.
|
| 109 |
+
|
| 110 |
+
La esquina superior izquierda de la cuadrícula se determinará con las coodenadas $x_0$ e $y_0$.
|
| 111 |
+
"""
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Sidebar
|
| 115 |
+
# -------
|
| 116 |
+
|
| 117 |
+
x0 = 0
|
| 118 |
+
x1 = min(img1.shape[1], img2.shape[1], img3.shape[1], img4.shape[1], img5.shape[1], img6.shape[1])
|
| 119 |
+
y0 = 0
|
| 120 |
+
y1 = min(img1.shape[0], img2.shape[0], img3.shape[0], img4.shape[0], img5.shape[0], img6.shape[0])
|
| 121 |
+
|
| 122 |
+
coord_x = st.sidebar.slider('Coordenada x.0', x0, x1)
|
| 123 |
+
coord_y = st.sidebar.slider('Coordenada y.0', y0, y1)
|
| 124 |
+
|
| 125 |
+
a0 = 1
|
| 126 |
+
a1 = 250
|
| 127 |
+
ancho = st.sidebar.slider('Ancho/Alto de la cuadrícula', a0, a1, value=5)
|
| 128 |
+
|
| 129 |
+
if coord_x + ancho > x1:
|
| 130 |
+
coord_x = x1 - ancho
|
| 131 |
+
xn = x1
|
| 132 |
+
else:
|
| 133 |
+
xn = coord_x + ancho
|
| 134 |
+
|
| 135 |
+
if coord_y + ancho > y1:
|
| 136 |
+
coord_y = y1 - ancho
|
| 137 |
+
yn = y1
|
| 138 |
+
else:
|
| 139 |
+
yn = coord_y + ancho
|
| 140 |
+
|
| 141 |
+
# st.sidebar.write('x0', coord_x)
|
| 142 |
+
# st.sidebar.write('y0', coord_y)
|
| 143 |
+
# st.sidebar.write('xn', xn)
|
| 144 |
+
# st.sidebar.write('yn', yn)
|
| 145 |
+
# st.sidebar.write('ancho', ancho)
|
| 146 |
+
# st.sidebar.write('x1', x1)
|
| 147 |
+
# st.sidebar.write('y1', y1)
|
| 148 |
+
|
| 149 |
+
# Cuadrículas
|
| 150 |
+
# ===========
|
| 151 |
+
|
| 152 |
+
st.markdown('---')
|
| 153 |
+
st.subheader('Cuadriculas de estudio e índice de vegetación NDVI')
|
| 154 |
+
|
| 155 |
+
x0 = coord_x
|
| 156 |
+
y0 = coord_y
|
| 157 |
+
|
| 158 |
+
st.markdown(f'Coordenadas de la esquina superior izquierda:   $x_0$ * $y_0$ = {x0} * {y0} px')
|
| 159 |
+
st.markdown(f'Coordenadas de la esquina superior derecha:   $x_n$ * $y_n$ = {xn} * {yn} px')
|
| 160 |
+
|
| 161 |
+
cuadricula1 = img1[y0:yn, x0:xn]
|
| 162 |
+
cuadricula2 = img2[y0:yn, x0:xn]
|
| 163 |
+
cuadricula3 = img3[y0:yn, x0:xn]
|
| 164 |
+
cuadricula4 = img4[y0:yn, x0:xn]
|
| 165 |
+
cuadricula5 = img5[y0:yn, x0:xn]
|
| 166 |
+
cuadricula6 = img6[y0:yn, x0:xn]
|
| 167 |
+
cuadriculas = (cuadricula1, cuadricula2, cuadricula3, cuadricula4, cuadricula5, cuadricula6)
|
| 168 |
+
|
| 169 |
+
def zona_ndvi(ndvi):
|
| 170 |
+
"""Zona de representación según el rango."""
|
| 171 |
+
if ndvi < 0:
|
| 172 |
+
return 'Zona sin vegetación'
|
| 173 |
+
elif ndvi > 0.3:
|
| 174 |
+
return 'Zona con vegetación'
|
| 175 |
+
else:
|
| 176 |
+
return 'Zona con algo de vegetación'
|
| 177 |
+
|
| 178 |
+
i = 0
|
| 179 |
+
for cuadricula in cuadriculas:
|
| 180 |
+
i += 1
|
| 181 |
+
st.markdown(f'')
|
| 182 |
+
st.markdown(f'##### Cuadrícula {i}')
|
| 183 |
+
st.image(cuadricula, width=400, clamp=True)
|
| 184 |
+
|
| 185 |
+
st.text('Valor NDVI de cada píxel de la cuadrícula:')
|
| 186 |
+
np_data = np.asarray(cuadricula)
|
| 187 |
+
st.write(np.round(np_data, 3))
|
| 188 |
+
|
| 189 |
+
np_data_mean = np_data.mean()
|
| 190 |
+
st.markdown(f'##### Valor promedio NDVI del conjunto de píxeles de la cuadrícula:   {np_data_mean:.3f}')
|
| 191 |
+
|
| 192 |
+
zona = zona_ndvi(np_data_mean)
|
| 193 |
+
st.markdown(f'##### Interpretación del valor promedio NDVI de la cuadrícula {i}   →   {zona}')
|
| 194 |
+
|
| 195 |
+
# Random Forest
|
| 196 |
+
# =============
|
| 197 |
+
|
| 198 |
+
st.markdown('---')
|
| 199 |
+
st.subheader('Predicción de la IA')
|
| 200 |
+
st.markdown(
|
| 201 |
+
"""
|
| 202 |
+
El sistema se entrena con una porción igual de cada una de las imágenes 1 a 5. Esta porción es un recuadro de \
|
| 203 |
+
coordenadas aleatorias y dimensiones igual al ancho/alto de la cuadrícula indicado en la banda lateral.
|
| 204 |
+
|
| 205 |
+
La razón de elegir un recuadro reducido es el elevado coste computacional que tiene el entrenamiento del sistema. \
|
| 206 |
+
De esta forma la aplicación puede mostrar unos resultados de una forma relativamente ágil.
|
| 207 |
+
|
| 208 |
+
Para el test se ha elegido las imágenes de las cuadrículas 1 a 5 con las que se ha obtenido el índice NDVI.
|
| 209 |
+
|
| 210 |
+
La predicción se hace con la cuadrícula 6. Se compara la imagen original con la predicha por la IA.
|
| 211 |
+
"""
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Imágenes de entrenamiento
|
| 215 |
+
# -------------------------
|
| 216 |
+
numpydata1 = np.asarray(img1)
|
| 217 |
+
numpydata2 = np.asarray(img2)
|
| 218 |
+
numpydata3 = np.asarray(img3)
|
| 219 |
+
numpydata4 = np.asarray(img4)
|
| 220 |
+
numpydata5 = np.asarray(img5)
|
| 221 |
+
|
| 222 |
+
# Imágenes para test
|
| 223 |
+
# ------------------
|
| 224 |
+
numpydata6 = np.asarray(img6)
|
| 225 |
+
|
| 226 |
+
X = []
|
| 227 |
+
y = []
|
| 228 |
+
|
| 229 |
+
dim = ancho
|
| 230 |
+
i0 = random.randint(0, x1 - dim) # Mitad izquierda de la imagen
|
| 231 |
+
j0 = random.randint(0, y1 - dim)
|
| 232 |
+
ik = i0 + dim - 2
|
| 233 |
+
jk = j0 + dim - 2
|
| 234 |
+
|
| 235 |
+
for i in range(i0, ik):
|
| 236 |
+
for j in range(j0, jk):
|
| 237 |
+
X.append(
|
| 238 |
+
[
|
| 239 |
+
numpydata1[i, j], numpydata1[i, j + 1], numpydata1[i, j + 2],
|
| 240 |
+
numpydata1[i + 1, j], numpydata1[i + 1, j + 1], numpydata1[i + 1, j + 2],
|
| 241 |
+
numpydata1[i + 2, j], numpydata1[i + 2, j + 1], numpydata1[i + 2, j + 2],
|
| 242 |
+
numpydata2[i, j], numpydata2[i, j + 1], numpydata2[i, j + 2],
|
| 243 |
+
numpydata2[i + 1, j], numpydata2[i + 1, j + 1], numpydata2[i + 1, j + 2],
|
| 244 |
+
numpydata2[i + 2, j], numpydata2[i + 2, j + 1], numpydata2[i + 2, j + 2],
|
| 245 |
+
numpydata3[i, j], numpydata3[i, j + 1], numpydata3[i, j + 2],
|
| 246 |
+
numpydata3[i + 1, j], numpydata3[i + 1, j + 1], numpydata3[i + 1, j + 2],
|
| 247 |
+
numpydata3[i + 2, j], numpydata3[i + 2, j + 1], numpydata3[i + 2, j + 2],
|
| 248 |
+
numpydata4[i, j], numpydata4[i, j + 1], numpydata4[i, j + 2],
|
| 249 |
+
numpydata4[i + 1, j], numpydata4[i + 1, j + 1], numpydata4[i + 1, j + 2],
|
| 250 |
+
numpydata4[i + 2, j], numpydata4[i + 2, j + 1], numpydata4[i + 2, j + 2],
|
| 251 |
+
numpydata5[i, j], numpydata5[i, j + 1], numpydata5[i, j + 2],
|
| 252 |
+
numpydata5[i + 1, j], numpydata5[i + 1, j + 1], numpydata5[i + 1, j + 2],
|
| 253 |
+
numpydata5[i + 2, j], numpydata5[i + 2, j + 1], numpydata5[i + 2, j + 2]
|
| 254 |
+
]
|
| 255 |
+
)
|
| 256 |
+
y.append(numpydata6[i + 1, j + 1])
|
| 257 |
+
|
| 258 |
+
# Clasificador
|
| 259 |
+
# ------------
|
| 260 |
+
|
| 261 |
+
cls = RandomForestRegressor()
|
| 262 |
+
|
| 263 |
+
# Entrenamiento
|
| 264 |
+
# -------------
|
| 265 |
+
|
| 266 |
+
cls.fit(X, y)
|
| 267 |
+
|
| 268 |
+
A = []
|
| 269 |
+
b = []
|
| 270 |
+
|
| 271 |
+
i0 = x0
|
| 272 |
+
j0 = y0
|
| 273 |
+
ik = i0 + dim
|
| 274 |
+
jk = j0 + dim
|
| 275 |
+
|
| 276 |
+
for i in range(j0, jk):
|
| 277 |
+
for j in range(i0, ik):
|
| 278 |
+
A.append(
|
| 279 |
+
[
|
| 280 |
+
numpydata1[i, j], numpydata1[i, j + 1], numpydata1[i, j + 2],
|
| 281 |
+
numpydata1[i + 1, j], numpydata1[i + 1, j + 1], numpydata1[i + 1, j + 2],
|
| 282 |
+
numpydata1[i + 2, j], numpydata1[i + 2, j + 1], numpydata1[i + 2, j + 2],
|
| 283 |
+
numpydata2[i, j], numpydata2[i, j + 1], numpydata2[i, j + 2],
|
| 284 |
+
numpydata2[i + 1, j], numpydata2[i + 1, j + 1], numpydata2[i + 1, j + 2],
|
| 285 |
+
numpydata2[i + 2, j], numpydata2[i + 2, j + 1], numpydata2[i + 2, j + 2],
|
| 286 |
+
numpydata3[i, j], numpydata3[i, j + 1], numpydata3[i, j + 2],
|
| 287 |
+
numpydata3[i + 1, j], numpydata3[i + 1, j + 1], numpydata3[i + 1, j + 2],
|
| 288 |
+
numpydata3[i + 2, j], numpydata3[i + 2, j + 1], numpydata3[i + 2, j + 2],
|
| 289 |
+
numpydata4[i, j], numpydata4[i, j + 1], numpydata4[i, j + 2],
|
| 290 |
+
numpydata4[i + 1, j], numpydata4[i + 1, j + 1], numpydata4[i + 1, j + 2],
|
| 291 |
+
numpydata4[i + 2, j], numpydata4[i + 2, j + 1], numpydata4[i + 2, j + 2],
|
| 292 |
+
numpydata5[i, j], numpydata5[i, j + 1], numpydata5[i, j + 2],
|
| 293 |
+
numpydata5[i + 1, j], numpydata5[i + 1, j + 1], numpydata5[i + 1, j + 2],
|
| 294 |
+
numpydata5[i + 2, j], numpydata5[i + 2, j + 1], numpydata5[i + 2, j + 2]
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
b.append(numpydata6[i + 1, j + 1])
|
| 298 |
+
|
| 299 |
+
b_predicho = cls.predict(A)
|
| 300 |
+
mse = mean_squared_error(b, b_predicho)
|
| 301 |
+
|
| 302 |
+
# Plot
|
| 303 |
+
# ----
|
| 304 |
+
|
| 305 |
+
tfreal = b
|
| 306 |
+
tfpredicho = b_predicho.tolist()
|
| 307 |
+
|
| 308 |
+
anp=np.array(tfpredicho)
|
| 309 |
+
anp=np.reshape(anp, (ik - i0, jk - j0))
|
| 310 |
+
org=np.array(tfreal)
|
| 311 |
+
org=np.reshape(org, (ik - i0, jk - j0))
|
| 312 |
+
|
| 313 |
+
st.markdown(f'Coordenadas de la esquina superior izquierda:   $i_0$ * $j_0$ = {i0} * {j0} px')
|
| 314 |
+
st.markdown(f'Coordenadas de la esquina superior derecha:   $i_n$ * $j_n$ = {ik} * {jk} px')
|
| 315 |
+
|
| 316 |
+
st.markdown(f'##### Error cuadrático promedio:   {mse:.5f}')
|
| 317 |
+
|
| 318 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
|
| 319 |
+
ax1.imshow(org.astype(np.float64), interpolation='nearest')
|
| 320 |
+
ax2.imshow(anp.astype(np.float64), interpolation='nearest')
|
| 321 |
+
ax1.set_title('Imagen original')
|
| 322 |
+
ax2.set_title('Imagen predicha por la IA')
|
| 323 |
+
st.pyplot(fig)
|
| 324 |
+
|
| 325 |
+
np_data_6 = np.asarray(cuadricula6)
|
| 326 |
+
|
| 327 |
+
np_data_mean_6 = np_data_6.mean()
|
| 328 |
+
np_data_mean_anp = anp.mean()
|
| 329 |
+
|
| 330 |
+
st.markdown(f'##### Valor promedio NDVI del conjunto de píxeles:')
|
| 331 |
+
st.markdown(f'##### Imagen original:            {np_data_mean_6:.3f}')
|
| 332 |
+
st.markdown(f'##### Cuadrícula predicha por la IA:   {np_data_mean_anp:.3f}')
|
| 333 |
+
|
| 334 |
+
zona_6 = zona_ndvi(np_data_mean_6)
|
| 335 |
+
zona_anp = zona_ndvi(np_data_mean_anp)
|
| 336 |
+
st.markdown(f'##### Interpretación del valor promedio NDVI:')
|
| 337 |
+
st.markdown(f'##### Imagen original:             →   {zona_6}')
|
| 338 |
+
st.markdown(f'##### Cuadrícula predicha por la IA:   →   {zona_anp}')
|
| 339 |
+
|
| 340 |
+
# Créditos
|
| 341 |
+
# ========
|
| 342 |
+
|
| 343 |
+
st.markdown('---')
|
| 344 |
+
with st.expander('Créditos'):
|
| 345 |
+
st.markdown(
|
| 346 |
+
"""
|
| 347 |
+
06/03/2022
|
| 348 |
+
|
| 349 |
+
Autores:
|
| 350 |
+
|
| 351 |
+
* [Eva de Miguel](https://www.linkedin.com/in/eva-de-miguel-morales-a63938a0/)
|
| 352 |
+
* [Pedro Biel](www.linkedin.com/in/pedrobiel)
|
| 353 |
+
* [Yinet Castiblanco](https://www.linkedin.com/in/yinethcastiblancorojas/)
|
| 354 |
+
|
| 355 |
+
---
|
| 356 |
+
|
| 357 |
+
* **Artículo Medium** [Medium](https://medium.com/saturdays-ai/predicci%C3%B3n-de-zonas-de-desertificaci%C3%B3n-en-arag%C3%B3n-usando-ia-ee59c15c12a5)
|
| 358 |
+
* **Código fuente:** [GitHub](https://github.com/desertificacion-AI/desertificacion-AI)
|
| 359 |
+
"""
|
| 360 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
matplotlib==3.5.1
|
| 2 |
+
rasterio==1.2.10
|
| 3 |
+
scikit-image==0.19.2
|
| 4 |
+
scikit-learn==1.0.2
|
| 5 |
+
streamlit==1.5.1
|