retinal-disease / app.py
marcossalinas's picture
Update app.py
eb0073f
raw
history blame
1.52 kB
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import keras
import gradio as gr
SHAPE = (224, 224, 3)
disease_risk = keras.models.load_model('predictor_Disease_Risk.h5')
def cut_and_resize(image):
LOW_TOL = 20
img_bw = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img_bw[img_bw<=LOW_TOL] = 0
y_nonzero, x_nonzero = np.nonzero(img_bw)
image = image[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero): np.max(x_nonzero), ]
return cv2.resize(image, SHAPE[:2], interpolation = cv2.INTER_LINEAR)
def simple_normalizer(X):
return X / 255.0
def predict (image_path):
image = simple_normalizer(cut_and_resize(cv2.imread(image_path)))
result = disease_risk.predict(np.array([image]))[0][0]
return {'Enferma': float(result), 'Sana': 1 - float(result)}
title = 'RetinAI (versi贸n alfa)'
description = 'Modelo de deep learning que permite clasificar im谩genes de la retina en patol贸gicas y no patol贸gicas. Primera fase de un proyecto que pretende realizar screening de las principales enfermedades de la retina que producen ceguera. Las im谩genes deben tener fondo negro.'
article = 'Demo del proyecto para Saturdays.\nAutores del modelo: [...] '
interface = gr.Interface(
predict,
inputs = [gr.outputs.Image()],
outputs= [gr.outputs.Label(num_top_classes=2, label='Retina')],
title = title, description = description, article = article,
theme = 'peach',
examples = ['82.png', '15.png', '61.png', '37.png', '631.png', '23.png', '8.png']
)
interface.launch()