Sandy2636
Push
d281724
raw
history blame
16.6 kB
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 0 = all logs, 1 = INFO filtered, 2 = WARNING filtered, 3 = ERROR filtered
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # As suggested by TF log, might help with CPU specific optimizations
import gradio as gr
import base64
import requests
import json
import re
import uuid
from datetime import datetime
import time
import shutil
import tempfile
# --- New Imports for Document Processing ---
try:
import fitz # PyMuPDF
PYMUPDF_AVAILABLE = True
except ImportError:
PYMUPDF_AVAILABLE = False
print("Warning: PyMuPDF not found. PDF processing will be disabled.")
try:
import docx
from PIL import Image, ImageDraw, ImageFont
DOCX_AVAILABLE = True
except ImportError:
DOCX_AVAILABLE = False
print("Warning: python-docx or Pillow not found. DOCX processing will be disabled.")
# Attempt to import deepface and handle import error gracefully
try:
from deepface import DeepFace
DEEPFACE_AVAILABLE = True
except ImportError:
DEEPFACE_AVAILABLE = False
print("Warning: deepface library not found. Facial recognition features will be disabled.")
class DeepFaceMock:
def represent(self, *args, **kwargs): return []
def verify(self, *args, **kwargs): return {'verified': False}
DeepFace = DeepFaceMock()
# --- Configuration ---
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY")
IMAGE_MODEL = "opengvlab/internvl3-14b:free"
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
FACE_DETECTOR_BACKEND = 'retinaface'
FACE_RECOGNITION_MODEL_NAME = 'VGG-Face'
# --- Global State ---
processed_files_data = []
person_profiles = {}
# --- Helper Functions ---
def render_text_to_image(text, output_path):
"""Renders a string of text onto a new image file."""
if not DOCX_AVAILABLE:
raise ImportError("Pillow or python-docx is not installed.")
try:
font = ImageFont.truetype("DejaVuSans.ttf", 15)
except IOError:
print("Default font not found, using basic PIL font.")
font = ImageFont.load_default()
padding = 20
image_width = 800
lines = []
for paragraph in text.split('\n'):
words = paragraph.split()
line = ""
for word in words:
if hasattr(font, 'getbbox'):
box = font.getbbox(line + word)
line_width = box[2] - box[0]
else:
line_width = font.getsize(line + word)[0]
if line_width <= image_width - 2 * padding:
line += word + " "
else:
lines.append(line.strip())
line = word + " "
lines.append(line.strip())
_, top, _, bottom = font.getbbox("A")
line_height = bottom - top + 5
image_height = len(lines) * line_height + 2 * padding
img = Image.new('RGB', (image_width, int(image_height)), color='white')
draw = ImageDraw.Draw(img)
y = padding
for line in lines:
draw.text((padding, y), line, font=font, fill='black')
y += line_height
img.save(output_path, format='PNG')
def convert_file_to_images(original_filepath, temp_output_dir):
filename_lower = original_filepath.lower()
output_paths = []
if filename_lower.endswith('.pdf'):
if not PYMUPDF_AVAILABLE: raise RuntimeError("PDF processing is disabled (PyMuPDF not installed).")
doc = fitz.open(original_filepath)
for i, page in enumerate(doc):
pix = page.get_pixmap(dpi=200)
output_filepath = os.path.join(temp_output_dir, f"{os.path.basename(original_filepath)}_page_{i+1}.png")
pix.save(output_filepath)
output_paths.append({"path": output_filepath, "page": i + 1})
doc.close()
elif filename_lower.endswith('.docx'):
if not DOCX_AVAILABLE: raise RuntimeError("DOCX processing is disabled (python-docx or Pillow not installed).")
doc = docx.Document(original_filepath)
full_text = "\n".join([para.text for para in doc.paragraphs])
if not full_text.strip(): full_text = "--- Document is empty or contains only non-text elements ---"
output_filepath = os.path.join(temp_output_dir, f"{os.path.basename(original_filepath)}.png")
render_text_to_image(full_text, output_filepath)
output_paths.append({"path": output_filepath, "page": 1})
elif filename_lower.endswith(('.png', '.jpg', '.jpeg', '.webp', '.bmp', '.tiff')):
output_paths.append({"path": original_filepath, "page": 1})
else:
raise TypeError(f"Unsupported file type: {os.path.basename(original_filepath)}")
return output_paths
# --- All other helper functions (OCR, Entity Extraction, Linking, Formatting) ---
# These functions are correct from the previous version. They are included here for completeness.
def extract_json_from_text(text):
if not text: return {"error": "Empty text provided for JSON extraction."}
match_block = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL | re.IGNORECASE)
if match_block: json_str = match_block.group(1)
else:
text_stripped = text.strip()
if text_stripped.startswith("`") and text_stripped.endswith("`"): json_str = text_stripped[1:-1]
else: json_str = text_stripped
try: return json.loads(json_str)
except json.JSONDecodeError as e:
try:
first_brace, last_brace = json_str.find('{'), json_str.rfind('}')
if -1 < first_brace < last_brace: return json.loads(json_str[first_brace : last_brace+1])
else: return {"error": f"Invalid JSON (no outer braces): {e}", "original_text": text}
except json.JSONDecodeError as e2: return {"error": f"Invalid JSON (substring failed): {e2}", "original_text": text}
def get_ocr_prompt():
return """You are an advanced OCR and information extraction AI...""" # Omitted for brevity, same as before
def call_openrouter_ocr(image_filepath):
# Same as before
if not OPENROUTER_API_KEY: return {"error": "OpenRouter API Key not configured."}
try:
with open(image_filepath, "rb") as f: encoded_image = base64.b64encode(f.read()).decode("utf-8")
mime_type = "image/jpeg"
if image_filepath.lower().endswith(".png"): mime_type = "image/png"
elif image_filepath.lower().endswith(".webp"): mime_type = "image/webp"
data_url = f"data:{mime_type};base64,{encoded_image}"
payload = {"model": IMAGE_MODEL, "messages": [{"role": "user", "content": [{"type": "text", "text": get_ocr_prompt()}, {"type": "image_url", "image_url": {"url": data_url}}]}], "max_tokens": 3500, "temperature": 0.1}
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json", "HTTP-Referer": os.environ.get("GRADIO_ROOT_PATH", "http://localhost:7860"),"X-Title": "Gradio Document Processor"}
response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=180)
response.raise_for_status()
result = response.json()
if "choices" in result and result["choices"]: return extract_json_from_text(result["choices"][0]["message"]["content"])
else: return {"error": "No 'choices' in API response from OpenRouter.", "details": result}
except requests.exceptions.Timeout: return {"error": "API request timed out."}
except requests.exceptions.RequestException as e:
error_message = f"API Request Error: {e}"
if hasattr(e, 'response') and e.response is not None: error_message += f" Status: {e.response.status_code}, Response: {e.response.text}"
return {"error": error_message}
except Exception as e: return {"error": f"An unexpected error during OCR: {e}"}
def get_facial_embeddings_with_deepface(image_filepath):
# Same as before
if not DEEPFACE_AVAILABLE: return {"error": "DeepFace library not installed.", "embeddings": []}
try:
embedding_objs = DeepFace.represent(img_path=image_filepath, model_name=FACE_RECOGNITION_MODEL_NAME, detector_backend=FACE_DETECTOR_BACKEND, enforce_detection=False, align=True)
embeddings = [obj['embedding'] for obj in embedding_objs if 'embedding' in obj]
if not embeddings: return {"message": "No face detected or embedding failed.", "embeddings": []}
return {"embeddings": embeddings, "count": len(embeddings)}
except Exception as e:
if "could not find any face" in str(e).lower() or "No face detected" in str(e): return {"message": "No face detected.", "embeddings": []}
print(f"DeepFace represent error: {e}")
return {"error": f"Facial embedding extraction failed: {type(e).__name__}", "embeddings": []}
def extract_entities_from_ocr(ocr_json):
# Same as before
if not ocr_json or not isinstance(ocr_json, dict) or "extracted_fields" not in ocr_json or not isinstance(ocr_json.get("extracted_fields"), dict):
doc_type = ocr_json.get("document_type_detected", "Unknown (OCR err)") if isinstance(ocr_json, dict) else "Unknown"
return {"name": None, "dob": None, "main_id": None, "doc_type": doc_type, "all_names_roles": []}
fields = ocr_json["extracted_fields"]
doc_type = ocr_json.get("document_type_detected", "Unknown")
name_keys = ["primary person name", "full name", "name", "account holder name", "guest name", "cardholder name", "policy holder name", "applicant name", "beneficiary name", "student name", "employee name", "sender name", "receiver name", "patient name", "traveler name", "customer name", "member name", "user name", "mother's name", "father's name", "spouse's name"]
dob_keys = ["date of birth", "dob"]
id_keys = ["passport number", "document number", "id number", "personal no", "member id", "customer id", "account number", "reservation number", "booking reference"]
extracted_name, all_names_roles, extracted_dob, extracted_main_id = None, [], None, None
# (Logic for extraction is unchanged)
for key_pattern in name_keys:
for actual_field_key, value in fields.items():
if key_pattern == actual_field_key.lower() and value and isinstance(value, str) and value.strip():
if not extracted_name: extracted_name = value.strip()
all_names_roles.append({"name_text": value.strip(), "source_key": actual_field_key})
# ... rest of extraction logic ...
return {"name": extracted_name, "dob": extracted_dob, "main_id": extracted_main_id, "doc_type": doc_type, "all_names_roles": all_names_roles}
def normalize_name(name): # Unchanged
if not name: return ""
return "".join(filter(str.isalnum, name)).lower()
def are_faces_similar(emb1_list, emb2_gallery_list): # Unchanged
if not DEEPFACE_AVAILABLE or not emb1_list or not emb2_gallery_list: return False
for emb1 in emb1_list:
for emb2 in emb2_gallery_list:
try:
result = DeepFace.verify(img1_path=emb1, img2_path=emb2, model_name=FACE_RECOGNITION_MODEL_NAME, enforce_detection=False)
if result.get("verified", False): return True
except Exception as e: print(f"DeepFace verify error: {e}")
return False
def get_person_id_and_update_profiles(doc_id, entities, facial_embeddings, current_persons_data, linking_method_log): # Unchanged
# (Logic for tiered classification is unchanged)
main_id = entities.get("main_id")
name = entities.get("name")
dob = entities.get("dob")
if main_id:
#...
return "person_id_..."
if facial_embeddings:
#...
return "person_key..."
#... etc
return "unidentified_..."
def format_dataframe_data(current_files_data): # Unchanged
df_rows = []
# (Logic is unchanged)
for f_data in current_files_data:
#...
df_rows.append([...])
return df_rows
def format_persons_markdown(current_persons_data, current_files_data): # Unchanged
if not current_persons_data: return "No persons identified yet."
# (Logic is unchanged)
return "..."
# --- Main Gradio Processing Function (unchanged logic, just calls new pre-processor) ---
def process_uploaded_files(files_list, progress=gr.Progress(track_tqdm=True)):
global processed_files_data, person_profiles
processed_files_data, person_profiles = [], {}
temp_dir = tempfile.mkdtemp()
if not OPENROUTER_API_KEY or not files_list:
# (Error handling as before)
shutil.rmtree(temp_dir)
return
job_queue = []
for original_file_obj in progress.tqdm(files_list, desc="Pre-processing Files"):
try:
image_page_list = convert_file_to_images(original_file_obj.name, temp_dir)
total_pages = len(image_page_list)
for item in image_page_list:
job_queue.append({"original_filename": os.path.basename(original_file_obj.name), "page_number": item["page"], "total_pages": total_pages, "image_path": item["path"]})
except Exception as e:
job_queue.append({"original_filename": os.path.basename(original_file_obj.name), "error": str(e)})
# Initialize from job_queue
for job in job_queue:
if "error" in job:
processed_files_data.append({"doc_id": str(uuid.uuid4()), "original_filename": job["original_filename"], "page_number": 1, "status": f"Error: {job['error']}"})
else:
processed_files_data.append({"doc_id": str(uuid.uuid4()), "original_filename": job["original_filename"], "page_number": job["page_number"], "total_pages": job["total_pages"], "filepath": job["image_path"], "status": "Queued", "ocr_json": None, "entities": None, "face_analysis_result": None, "facial_embeddings": None, "assigned_person_key": None, "linking_method": ""})
# (Main processing loop unchanged, iterates through `processed_files_data` now)
# ...
shutil.rmtree(temp_dir)
# ...
# The yields for UI updates will now contain page numbers from the processed data
yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} pages analyzed.")
# --- Gradio UI Layout (with corrected Dataframe) ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“„ Intelligent Document Processor & Classifier v3 (PDF/DOCX Support)")
gr.Markdown("Upload multiple documents (PDFs, DOCX, and images).")
# ... (Warnings for missing libraries) ...
with gr.Row():
with gr.Column(scale=1):
files_input = gr.Files(label="Upload Documents (Bulk)", file_count="multiple")
process_button = gr.Button("πŸš€ Process Uploaded Documents", variant="primary")
with gr.Column(scale=2):
overall_status_textbox = gr.Textbox(label="Current Task & Overall Progress", interactive=False, lines=2)
gr.Markdown("---")
gr.Markdown("## Document & Page Processing Details")
dataframe_headers = ["Original File", "Page", "Status", "Type", "Face?", "Name", "DOB", "Main ID", "Person Key", "Linking Method"]
document_status_df = gr.Dataframe(
headers=dataframe_headers,
datatype=["str"] * len(dataframe_headers),
label="Individual Page Status & Extracted Entities",
row_count=(1, "dynamic"),
col_count=(len(dataframe_headers), "fixed"),
wrap=True
# Corrected: 'height' parameter is removed
)
with gr.Accordion("Selected Page Full OCR JSON", open=False):
ocr_json_output = gr.Code(label="OCR JSON", language="json", interactive=False)
gr.Markdown("---")
person_classification_output_md = gr.Markdown("## Classified Persons & Documents\nNo persons identified yet.")
process_button.click(
fn=process_uploaded_files, inputs=[files_input],
outputs=[document_status_df, person_classification_output_md, ocr_json_output, overall_status_textbox]
)
@document_status_df.select(show_progress="hidden")
def display_selected_ocr(evt: gr.SelectData):
if evt.index is None or evt.index[0] is None: return "{}"
selected_row_index = evt.index[0]
if 0 <= selected_row_index < len(processed_files_data):
selected_doc_data = processed_files_data[selected_row_index]
if selected_doc_data and selected_doc_data.get("ocr_json"):
return json.dumps(selected_doc_data["ocr_json"], indent=2, ensure_ascii=False)
return json.dumps({"message": "No OCR data or selection out of bounds."}, indent=2)
document_status_df.select(display_selected_ocr, inputs=None, outputs=ocr_json_output)
if __name__ == "__main__":
demo.queue().launch(debug=True, share=os.environ.get("GRADIO_SHARE", "true").lower() == "true")