Sandy2636 commited on
Commit
0a8e31d
·
1 Parent(s): 4612198

Update space

Browse files
Files changed (2) hide show
  1. app.py +75 -48
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,64 +1,91 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import base64
3
+ import requests
4
+ from PIL import Image
5
+ import io
6
 
7
+ API_KEY = "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"
8
+ IMAGE_MODEL = "OpenGVLab/InternVL3-14B"
 
 
9
 
10
+ def extract_passport_info(images, document_type):
11
+ results = []
12
 
13
+ for image in images:
14
+ # Convert image to base64
15
+ buffered = io.BytesIO()
16
+ image.save(buffered, format="JPEG")
17
+ encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
18
+ data_url = f"data:image/jpeg;base64,{encoded_image}"
 
 
 
19
 
20
+ # Prompt to extract full passport data
21
+ prompt = (
22
+ f"Extract all passport information from the uploaded {document_type} image. "
23
+ "Include MRZ (if present), full name, passport number, nationality, gender, "
24
+ "date of birth, date of issue, expiry date, issuing country, and any other text or labels in other languages. "
25
+ "Return the result in a JSON format."
26
+ )
27
 
28
+ # OpenRouter Payload
29
+ payload = {
30
+ "model": IMAGE_MODEL,
31
+ "messages": [
32
+ {
33
+ "role": "user",
34
+ "content": [
35
+ {"type": "text", "text": prompt},
36
+ {"type": "image_url", "image_url": {"url": data_url}},
37
+ ],
38
+ }
39
+ ],
40
+ }
41
 
42
+ headers = {
43
+ "Authorization": f"Bearer {API_KEY}",
44
+ "Content-Type": "application/json"
45
+ }
46
 
47
+ try:
48
+ response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload)
49
+ result = response.json()
50
+ print("📡 Status:", response.status_code)
51
+ print("📡 Raw Result:", result)
 
 
 
52
 
53
+ if "choices" in result:
54
+ extracted = result["choices"][0]["message"]["content"]
55
+ results.append({
56
+ "document_type": document_type,
57
+ "extracted_info": extracted
58
+ })
59
+ else:
60
+ results.append({
61
+ "document_type": document_type,
62
+ "extracted_info": "❌ No data extracted"
63
+ })
64
 
65
+ except Exception as e:
66
+ results.append({
67
+ "document_type": document_type,
68
+ "extracted_info": f"⚠️ Error: {str(e)}"
69
+ })
70
 
71
+ return results
72
+
73
+
74
+ # Gradio UI
75
+ demo = gr.Interface(
76
+ fn=extract_passport_info,
77
+ inputs=[
78
+ gr.Image(type="pil", label="Upload Passport/Document Images", multiple=True),
79
+ gr.Dropdown(
80
+ choices=["passport_front", "passport_back", "photo", "hotel_reservation"],
81
+ label="Document Type",
82
+ value="passport_front",
83
+ )
 
 
 
84
  ],
85
+ outputs="json",
86
+ title="Passport & Document Info Extractor",
87
+ description="Upload one or more document images. Extracted information will include MRZ and all available text, structured in JSON format.",
88
  )
89
 
 
90
  if __name__ == "__main__":
91
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ gradio==3.50.2
2
+ requests
3
+ python-dotenv
4
+ Pillow