import gradio as gr import requests import base64 import os import json import mimetypes # --- Configuration --- OPENROUTER_API_KEY = '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' IMAGE_MODEL = "opengvlab/internvl3-14b:free" OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions" # --- Application State --- current_batch = [] # --- Helper Functions --- def generate_extraction_prompt(doc_type_provided_by_user): prompt = f"""You are an advanced OCR and information extraction AI. The user has provided an image and identified it as a '{doc_type_provided_by_user}'. Your task is to meticulously analyze this image and extract all relevant information. Output Format Instructions: Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON. The JSON object should have the following top-level keys: - "document_type_provided": (string) The type provided by the user: "{doc_type_provided_by_user}". - "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport", "National ID Card", "Driver's License", "Visa Sticker", "Hotel Confirmation Voucher", "Boarding Pass", "Photograph of a person"). - "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. Examples: - For passports/IDs: "Surname", "Given Names", "Document Number", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry", "Issuing Authority", "Country Code". - For hotel reservations: "Guest Name", "Hotel Name", "Booking Reference", "Check-in Date", "Check-out Date", "Room Type". - For photos: "Description" (e.g., "Portrait of a person", "Image contains text: [text if any]"). - "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present: - "raw_mrz_lines": (array of strings) Each line of the MRZ. - "parsed_mrz": (object) Key-value pairs of parsed MRZ fields (e.g., "passport_type", "issuing_country", "surname", "given_names", "passport_number", "nationality", "dob", "sex", "expiry_date", "personal_number"). If no MRZ, this field should be null. - "multilingual_info": (array of objects or null) For any text segments not in English: - Each object: {{"language_detected": "ISO 639-1 code", "original_text": "...", "english_translation_or_transliteration": "..."}} If no non-English text, this field can be null or an empty array. - "full_text_ocr": (string) Concatenation of all text found on the document. Extraction Guidelines: 1. Prioritize accuracy. If unsure about a character or word, indicate uncertainty if possible, or extract the most likely interpretation. 2. Extract all visible text, including small print, stamps, and handwritten annotations if legible. 3. For dates, try to use ISO 8601 format (YYYY-MM-DD) if possible, but retain original format if conversion is ambiguous. 4. If the image is a photo of a person without much text, the "extracted_fields" might contain a description, and "full_text_ocr" might be minimal. 5. If the document is multi-page and only one page is provided, note this if apparent. Ensure the entire output strictly adheres to the JSON format. """ return prompt def process_single_image_with_openrouter(image_path, doc_type): if not OPENROUTER_API_KEY: return {"error": "OpenRouter API key not set.", "document_type_provided": doc_type} try: with open(image_path, "rb") as f: encoded_image_bytes = f.read() encoded_image_string = base64.b64encode(encoded_image_bytes).decode("utf-8") mime_type, _ = mimetypes.guess_type(image_path) if not mime_type: ext = os.path.splitext(image_path)[1].lower() if ext == ".png": mime_type = "image/png" elif ext in [".jpg", ".jpeg"]: mime_type = "image/jpeg" elif ext == ".webp": mime_type = "image/webp" else: mime_type = "image/jpeg" data_url = f"data:{mime_type};base64,{encoded_image_string}" prompt_text = generate_extraction_prompt(doc_type) payload = { "model": IMAGE_MODEL, "messages": [ { "role": "user", "content": [ {"type": "text", "text": prompt_text}, {"type": "image_url", "image_url": {"url": data_url}} ] } ], "max_tokens": 3000, "temperature": 0.1, } headers = { "Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json", "HTTP-Referer": "https://huggingface.co/spaces/Passport_Extractor", "X-Title": "Document Classifier" } print(f"Sending request to OpenRouter for image: {os.path.basename(image_path)}, type: {doc_type}") response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=120) response.raise_for_status() result = response.json() print(f"Received response from OpenRouter. Status: {response.status_code}") if "choices" in result and result["choices"]: content_text = result["choices"][0]["message"]["content"] clean_content = content_text.strip() if clean_content.startswith("```json"): clean_content = clean_content[7:] if clean_content.endswith("```"): clean_content = clean_content[:-3] elif clean_content.startswith("`") and clean_content.endswith("`"): clean_content = clean_content[1:-1] try: parsed_json = json.loads(clean_content) if "document_type_provided" not in parsed_json: parsed_json["document_type_provided"] = doc_type return parsed_json except json.JSONDecodeError as e: print(f"JSONDecodeError: {e}. Raw content was:\n{content_text}") return { "error": "Failed to parse LLM output as JSON.", "raw_content_from_llm": content_text, "document_type_provided": doc_type } else: print(f"No 'choices' in API response: {result}") return {"error": "No choices in API response.", "details": result, "document_type_provided": doc_type} except requests.exceptions.Timeout: print(f"API Request Timeout for {os.path.basename(image_path)}") return {"error": "API request timed out.", "document_type_provided": doc_type} except requests.exceptions.RequestException as e: error_message = f"API Request Error: {str(e)}" if e.response is not None: error_message += f" Status: {e.response.status_code}, Response: {e.response.text}" print(error_message) return {"error": error_message, "document_type_provided": doc_type} except Exception as e: print(f"An unexpected error occurred during processing {os.path.basename(image_path)}: {str(e)}") return {"error": f"An unexpected error: {str(e)}", "document_type_provided": doc_type} def add_document_to_batch_ui(image_filepath, doc_type_selection): global current_batch if image_filepath and doc_type_selection: filename = os.path.basename(image_filepath) current_batch.append({"path": image_filepath, "type": doc_type_selection, "filename": filename}) batch_display_data = [[item["filename"], item["type"]] for item in current_batch] return batch_display_data, f"Added '{filename}' as '{doc_type_selection}'." batch_display_data = [[item["filename"], item["type"]] for item in current_batch] return batch_display_data, "Failed to add: Image or document type missing." def process_batch_ui(): global current_batch if not OPENROUTER_API_KEY: return {"error": "OPENROUTER_API_KEY is not set. Please configure it."}, "API Key Missing." if not current_batch: return {"message": "Batch is empty. Add documents first."}, "Batch is empty." all_results = [] status_updates = [] for i, item_to_process in enumerate(current_batch): status_msg = f"Processing document {i+1}/{len(current_batch)}: {item_to_process['filename']} ({item_to_process['type']})..." print(status_msg) extracted_data = process_single_image_with_openrouter(item_to_process["path"], item_to_process["type"]) all_results.append(extracted_data) if "error" in extracted_data: status_updates.append(f"Error processing {item_to_process['filename']}: {extracted_data['error']}") else: status_updates.append(f"Successfully processed {item_to_process['filename']}.") grouped_by_person = {} unidentified_docs = [] for result_item in all_results: doc_id = None if isinstance(result_item, dict) and "extracted_fields" in result_item and isinstance(result_item["extracted_fields"], dict): fields = result_item["extracted_fields"] passport_no = fields.get("Document Number") or fields.get("Passport Number") or fields.get("passport_number") name = fields.get("Given Names") or fields.get("Given Name") or fields.get("Name") surname = fields.get("Surname") or fields.get("Family Name") dob = fields.get("Date of Birth") or fields.get("DOB") if passport_no: doc_id = f"passport_{str(passport_no).replace(' ', '').lower()}" elif name and surname and dob: doc_id = f"{str(name).replace(' ', '').lower()}_{str(surname).replace(' ', '').lower()}_{str(dob).replace(' ', '')}" elif name and surname: doc_id = f"{str(name).replace(' ', '').lower()}_{str(surname).replace(' ', '').lower()}" if doc_id: if doc_id not in grouped_by_person: grouped_by_person[doc_id] = {"person_identifier": doc_id, "documents": []} grouped_by_person[doc_id]["documents"].append(result_item) else: unidentified_docs.append(result_item) final_structured_output = { "summary": f"Processed {len(current_batch)} documents.", "grouped_by_person": list(grouped_by_person.values()) if grouped_by_person else [], "unidentified_documents_or_errors": unidentified_docs } final_status = "Batch processing complete. " + " | ".join(status_updates) print(final_status) return final_structured_output, final_status def clear_batch_ui(): global current_batch current_batch = [] return [], "Batch cleared successfully." with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 📄 Document Information Extractor (OpenGVLab/InternVL3-14B via OpenRouter)") gr.Markdown( "**Instructions:**\n" "1. Upload a document image (e.g., passport front/back, photo, hotel reservation).\n" "2. Select the correct document type.\n" "3. Click 'Add Document to Current Batch'. Repeat for all documents of a person or a related set.\n" "4. Review the batch. Click 'Clear Entire Batch' to start over.\n" "5. Click 'Process Batch and Extract Information' to send documents to the AI.\n" "6. View the extracted information in JSON format below." ) if not OPENROUTER_API_KEY: gr.Markdown( "