Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
|
|
|
| 3 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
| 4 |
from io import BytesIO
|
| 5 |
from urllib.request import urlopen
|
|
@@ -7,56 +8,47 @@ import librosa
|
|
| 7 |
import os, json
|
| 8 |
from sys import argv
|
| 9 |
from vllm import LLM, SamplingParams
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# def load_model_processor(model_path):
|
| 12 |
-
# processor = AutoProcessor.from_pretrained(model_path)
|
| 13 |
-
# llm = LLM(
|
| 14 |
-
# model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
|
| 15 |
-
# enforce_eager=True, device = "cuda",
|
| 16 |
-
# limit_mm_per_prompt={"audio": 5},
|
| 17 |
-
# )
|
| 18 |
-
# return llm, processor
|
| 19 |
|
| 20 |
def load_model_processor(model_path):
|
| 21 |
processor = AutoProcessor.from_pretrained(model_path)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
model_path1 = "
|
| 27 |
model1, processor1 = load_model_processor(model_path1)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
# input = {
|
| 49 |
-
# 'prompt': text,
|
| 50 |
-
# 'multi_modal_data': {
|
| 51 |
-
# 'audio': [(audio, 16000) for audio in audios]
|
| 52 |
-
# }
|
| 53 |
-
# }
|
| 54 |
-
|
| 55 |
-
# output = model.generate([input], sampling_params=sampling_params)[0]
|
| 56 |
-
# response = output.outputs[0].text
|
| 57 |
-
# return response
|
| 58 |
-
|
| 59 |
-
def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
|
| 60 |
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
| 61 |
audios = []
|
| 62 |
for message in conversation:
|
|
@@ -68,103 +60,49 @@ def response_to_audio_conv(conversation, model=None, processor=None, temperature
|
|
| 68 |
ele['audio_url'],
|
| 69 |
sr=processor.feature_extractor.sampling_rate)[0]
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
return response
|
| 81 |
|
| 82 |
-
def
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
if turn['role'] == "user" and type(turn['content']) != str:
|
| 89 |
-
paths.append(turn['content'][0])
|
| 90 |
-
for x in message["files"]:
|
| 91 |
-
if x not in paths:
|
| 92 |
-
history.append({"role": "user", "content": {"path": x}})
|
| 93 |
-
if message["text"] is not None:
|
| 94 |
-
history.append({"role": "user", "content": message["text"]})
|
| 95 |
-
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
| 96 |
-
|
| 97 |
-
def format_user_messgae(message):
|
| 98 |
-
if type(message['content']) == str:
|
| 99 |
-
return {"role": "user", "content": [{"type": "text", "text": message['content']}]}
|
| 100 |
-
else:
|
| 101 |
-
return {"role": "user", "content": [{"type": "audio", "audio_url": message['content'][0]}]}
|
| 102 |
-
|
| 103 |
-
def history_to_conversation(history):
|
| 104 |
-
conversation = []
|
| 105 |
-
audio_paths = []
|
| 106 |
-
for turn in history:
|
| 107 |
-
if turn['role'] == "user":
|
| 108 |
-
if not turn['content']:
|
| 109 |
-
continue
|
| 110 |
-
turn = format_user_messgae(turn)
|
| 111 |
-
if turn['content'][0]['type'] == 'audio':
|
| 112 |
-
if turn['content'][0]['audio_url'] in audio_paths:
|
| 113 |
-
continue
|
| 114 |
-
else:
|
| 115 |
-
audio_paths.append(turn['content'][0]['audio_url'])
|
| 116 |
-
|
| 117 |
-
if len(conversation) > 0 and conversation[-1]["role"] == "user":
|
| 118 |
-
conversation[-1]['content'].append(turn['content'][0])
|
| 119 |
-
else:
|
| 120 |
-
conversation.append(turn)
|
| 121 |
-
else:
|
| 122 |
-
conversation.append(turn)
|
| 123 |
-
|
| 124 |
-
print(json.dumps(conversation, indent=4, ensure_ascii=False))
|
| 125 |
-
return conversation
|
| 126 |
-
|
| 127 |
-
def bot(history: list, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,
|
| 128 |
-
max_new_tokens = 2048):
|
| 129 |
-
conversation = history_to_conversation(history)
|
| 130 |
-
response = response_to_audio_conv(conversation, model=model1, processor=processor1, temperature = temperature,repetition_penalty=repetition_penalty, top_p = top_p, max_new_tokens = max_new_tokens)
|
| 131 |
-
# response = "Nice to meet you!"
|
| 132 |
-
print("Bot:",response)
|
| 133 |
-
|
| 134 |
-
history.append({"role": "assistant", "content": ""})
|
| 135 |
-
for character in response:
|
| 136 |
-
history[-1]["content"] += character
|
| 137 |
-
time.sleep(0.01)
|
| 138 |
-
yield history
|
| 139 |
-
|
| 140 |
-
insturctions = """**Instruction**: there are three input format:
|
| 141 |
-
1. text: input text message only
|
| 142 |
-
2. audio: upload audio file or record a voice message
|
| 143 |
-
3. audio + text: record a voice message and input text message"""
|
| 144 |
|
| 145 |
with gr.Blocks() as demo:
|
|
|
|
| 146 |
# gr.Markdown("""<p align="center"><img src="images/seal_logo.png" style="height: 80px"/><p>""")
|
| 147 |
# gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
|
|
|
|
|
|
|
| 148 |
gr.Markdown(
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
# Description text
|
| 153 |
-
gr.Markdown(
|
| 154 |
-
"""<div style="text-align: center; font-size: 16px;">
|
| 155 |
-
This WebUI is based on SeaLLMs-Audio-7B-Chat, developed by Alibaba DAMO Academy.<br>
|
| 156 |
You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
|
| 157 |
-
For
|
| 158 |
-
</div>""",
|
| 159 |
-
)
|
| 160 |
|
| 161 |
# Links with proper formatting
|
| 162 |
gr.Markdown(
|
| 163 |
-
"""<
|
| 164 |
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a>
|
| 165 |
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Model🤗]</a>
|
| 166 |
<a href="https://github.com/liuchaoqun/SeaLLMs-Audio">[Github]</a>
|
| 167 |
-
</
|
| 168 |
)
|
| 169 |
|
| 170 |
# gr.Markdown(insturctions)
|
|
@@ -175,36 +113,43 @@ with gr.Blocks() as demo:
|
|
| 175 |
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
|
| 176 |
# with gr.Column():
|
| 177 |
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
| 191 |
)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
#
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
demo.launch(
|
| 205 |
-
share=False,
|
| 206 |
-
inbrowser=True,
|
| 207 |
-
server_port=7950,
|
| 208 |
-
server_name="0.0.0.0",
|
| 209 |
-
max_threads=40
|
| 210 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
+
import transformers
|
| 4 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
| 5 |
from io import BytesIO
|
| 6 |
from urllib.request import urlopen
|
|
|
|
| 8 |
import os, json
|
| 9 |
from sys import argv
|
| 10 |
from vllm import LLM, SamplingParams
|
| 11 |
+
import vllm
|
| 12 |
+
|
| 13 |
+
from huggingface_hub import login
|
| 14 |
+
TOKEN = os.environ.get("TOKEN", None)
|
| 15 |
+
login(token=TOKEN)
|
| 16 |
+
|
| 17 |
+
print("transformers version:", transformers.__version__)
|
| 18 |
+
print("vllm version:", vllm.__version__)
|
| 19 |
+
print("gradio version:", gr.__version__)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def load_model_processor(model_path):
|
| 23 |
processor = AutoProcessor.from_pretrained(model_path)
|
| 24 |
+
llm = LLM(
|
| 25 |
+
model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
|
| 26 |
+
enforce_eager=True, device = "cuda",
|
| 27 |
+
limit_mm_per_prompt={"audio": 5},
|
| 28 |
+
)
|
| 29 |
+
return llm, processor
|
| 30 |
|
| 31 |
+
model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
|
| 32 |
model1, processor1 = load_model_processor(model_path1)
|
| 33 |
|
| 34 |
+
def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
|
| 35 |
+
if text == None:
|
| 36 |
+
conversation = [
|
| 37 |
+
{"role": "user", "content": [
|
| 38 |
+
{"type": "audio", "audio_url": audio_url},
|
| 39 |
+
]},]
|
| 40 |
+
elif audio_url == None:
|
| 41 |
+
conversation = [
|
| 42 |
+
{"role": "user", "content": [
|
| 43 |
+
{"type": "text", "text": text},
|
| 44 |
+
]},]
|
| 45 |
+
else:
|
| 46 |
+
conversation = [
|
| 47 |
+
{"role": "user", "content": [
|
| 48 |
+
{"type": "audio", "audio_url": audio_url},
|
| 49 |
+
{"type": "text", "text": text},
|
| 50 |
+
]},]
|
| 51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
| 53 |
audios = []
|
| 54 |
for message in conversation:
|
|
|
|
| 60 |
ele['audio_url'],
|
| 61 |
sr=processor.feature_extractor.sampling_rate)[0]
|
| 62 |
)
|
| 63 |
+
|
| 64 |
+
sampling_params = SamplingParams(
|
| 65 |
+
temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
|
| 66 |
+
stop_token_ids=[],
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
input = {
|
| 70 |
+
'prompt': text,
|
| 71 |
+
'multi_modal_data': {
|
| 72 |
+
'audio': [(audio, 16000) for audio in audios]
|
| 73 |
+
}
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
output = model.generate([input], sampling_params=sampling_params)[0]
|
| 77 |
+
response = output.outputs[0].text
|
| 78 |
return response
|
| 79 |
|
| 80 |
+
def clear_inputs():
|
| 81 |
+
return None, "", ""
|
| 82 |
+
|
| 83 |
+
def compare_responses(audio_url, text):
|
| 84 |
+
response1 = response_to_audio(audio_url, text, model1, processor1)
|
| 85 |
+
return response1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
+
# gr.Markdown(f"Evaluate {model_path1}")
|
| 89 |
# gr.Markdown("""<p align="center"><img src="images/seal_logo.png" style="height: 80px"/><p>""")
|
| 90 |
# gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
|
| 91 |
+
# gr.Markdown("""<center><font size=8>SeaLLMs-Audio Demo</center>""")
|
| 92 |
+
gr.Markdown("""# SeaLLMs-Audio Demo""")
|
| 93 |
gr.Markdown(
|
| 94 |
+
"""\
|
| 95 |
+
<center><font size=4>This WebUI is based on SeaLLMs-Audio-7B-Chat, developed by Alibaba DAMO Academy.<br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
|
| 97 |
+
For the input, you can input <b>audio and/or text</center>.""")
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Links with proper formatting
|
| 100 |
gr.Markdown(
|
| 101 |
+
"""<center><font size=4>
|
| 102 |
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a>
|
| 103 |
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Model🤗]</a>
|
| 104 |
<a href="https://github.com/liuchaoqun/SeaLLMs-Audio">[Github]</a>
|
| 105 |
+
</center>""",
|
| 106 |
)
|
| 107 |
|
| 108 |
# gr.Markdown(insturctions)
|
|
|
|
| 113 |
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
|
| 114 |
# with gr.Column():
|
| 115 |
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
|
| 116 |
+
|
| 117 |
+
with gr.Row():
|
| 118 |
+
with gr.Column():
|
| 119 |
+
# mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input")
|
| 120 |
+
mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input")
|
| 121 |
+
with gr.Column():
|
| 122 |
+
additional_input = gr.Textbox(label="Text Input")
|
| 123 |
+
|
| 124 |
+
# Button to trigger the function
|
| 125 |
+
with gr.Row():
|
| 126 |
+
btn_submit = gr.Button("Submit")
|
| 127 |
+
btn_clear = gr.Button("Clear")
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1")
|
| 131 |
+
|
| 132 |
+
btn_submit.click(
|
| 133 |
+
fn=compare_responses,
|
| 134 |
+
inputs=[mic_input, additional_input],
|
| 135 |
+
outputs=[output_text1],
|
| 136 |
)
|
| 137 |
|
| 138 |
+
btn_clear.click(
|
| 139 |
+
fn=clear_inputs,
|
| 140 |
+
inputs=None,
|
| 141 |
+
outputs=[mic_input, additional_input, output_text1],
|
| 142 |
+
queue=False,
|
| 143 |
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# demo.launch(
|
| 147 |
+
# share=False,
|
| 148 |
+
# inbrowser=True,
|
| 149 |
+
# server_port=7950,
|
| 150 |
+
# server_name="0.0.0.0",
|
| 151 |
+
# max_threads=40
|
| 152 |
+
# )
|
| 153 |
+
|
| 154 |
+
demo.launch(share=True)
|
| 155 |
+
demo.queue(default_concurrency_limit=40).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|