import gradio as gr import time from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor from io import BytesIO from urllib.request import urlopen import librosa import os, json from sys import argv from vllm import LLM, SamplingParams from huggingface_hub import login TOKEN = os.environ.get("TOKEN", None) login(token=TOKEN) print("transformers version:", transformers.__version__) print("vllm version:", vllm.__version__) print("gradio version:", gradio.__version__) def load_model_processor(model_path): processor = AutoProcessor.from_pretrained(model_path) llm = LLM( model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8, enforce_eager=True, device = "cuda", limit_mm_per_prompt={"audio": 5}, ) return llm, processor model_path1 = "SeaLLMs/SeaLLMs-Audio-7B" model1, processor1 = load_model_processor(model_path1) def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048): if text == None: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, ]},] elif audio_url == None: conversation = [ {"role": "user", "content": [ {"type": "text", "text": text}, ]},] else: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, {"type": "text", "text": text}, ]},] text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20, stop_token_ids=[], ) input = { 'prompt': text, 'multi_modal_data': { 'audio': [(audio, 16000) for audio in audios] } } output = model.generate([input], sampling_params=sampling_params)[0] response = output.outputs[0].text return response def clear_inputs(): return None, "", "" def compare_responses(audio_url, text): response1 = response_to_audio(audio_url, text, model1, processor1) return response1 with gr.Blocks() as demo: # gr.Markdown(f"Evaluate {model_path1}") # gr.Markdown("""

""") # gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False) gr.Markdown( """

SeaLLMs-Audio ChatBot
""", ) # Description text gr.Markdown( """
This WebUI is based on SeaLLMs-Audio-7B-Chat, developed by Alibaba DAMO Academy.
You can interact with the chatbot in English, Chinese, Indonesian, Thai, or Vietnamese.
For each round, you can input audio and/or text.
""", ) # Links with proper formatting gr.Markdown( """
[Website]   [ModelšŸ¤—]   [Github]
""", ) # gr.Markdown(insturctions) # with gr.Row(): # with gr.Column(): # temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature") # with gr.Column(): # top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P") # with gr.Column(): # repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty") with gr.Row(): with gr.Column(): # mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input") mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input") with gr.Column(): additional_input = gr.Textbox(label="Text Input") # Button to trigger the function with gr.Row(): btn_submit = gr.Button("Submit") btn_clear = gr.Button("Clear") with gr.Row(): output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1") btn_submit.click( fn=response_to_audio, inputs=[mic_input, additional_input], outputs=[output_text1], ) btn_clear.click( fn=clear_inputs, inputs=None, outputs=[mic_input, additional_input, output_text1], queue=False, ) # demo.launch( # share=False, # inbrowser=True, # server_port=7950, # server_name="0.0.0.0", # max_threads=40 # ) demo.launch(share=True) demo.queue(default_concurrency_limit=40).launch(share=True)