import gradio as gr import time from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor from io import BytesIO from urllib.request import urlopen import librosa import os, json from sys import argv from vllm import LLM, SamplingParams from huggingface_hub import login TOKEN = os.environ.get("TOKEN", None) login(token=TOKEN) print("transformers version:", transformers.__version__) print("vllm version:", vllm.__version__) print("gradio version:", gradio.__version__) def load_model_processor(model_path): processor = AutoProcessor.from_pretrained(model_path) llm = LLM( model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8, enforce_eager=True, device = "cuda", limit_mm_per_prompt={"audio": 5}, ) return llm, processor model_path1 = "SeaLLMs/SeaLLMs-Audio-7B" model1, processor1 = load_model_processor(model_path1) def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048): if text == None: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, ]},] elif audio_url == None: conversation = [ {"role": "user", "content": [ {"type": "text", "text": text}, ]},] else: conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": audio_url}, {"type": "text", "text": text}, ]},] text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20, stop_token_ids=[], ) input = { 'prompt': text, 'multi_modal_data': { 'audio': [(audio, 16000) for audio in audios] } } output = model.generate([input], sampling_params=sampling_params)[0] response = output.outputs[0].text return response def clear_inputs(): return None, "", "" def compare_responses(audio_url, text): response1 = response_to_audio(audio_url, text, model1, processor1) return response1 with gr.Blocks() as demo: # gr.Markdown(f"Evaluate {model_path1}") # gr.Markdown("""
""") # gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False) gr.Markdown( """