File size: 7,706 Bytes
93b2c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import torchvision.transforms as T

import gradio as gr
from PIL import Image
from copy import deepcopy

import os, sys
sys.path.append('./DETRPose')
sys.path.append('./DETRPose/tools/inference')

from DETRPose.src.core import LazyConfig, instantiate
from DETRPose.tools.inference.annotator import Annotator
from DETRPose.tools.inference.annotator_crowdpose import AnnotatorCrowdpose

DETRPOSE_MODELS = {
    # For COCO2017
    "DETRPose-N": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_n.py', 'n'],
    "DETRPose-S": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_s.py', 's'],
    "DETRPose-M": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_m.py', 'm'],
    "DETRPose-L": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_l.py', 'l'],
    "DETRPose-X": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_x.py', 'x'],
    # For CrowdPose
    "DETRPose-N-CrowdPose": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_n_crowdpose.py', 'n_crowdpose'],
    "DETRPose-S-CrowdPose": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_s_crowdpose.py', 's_crowdpose'],
    "DETRPose-M-CrowdPose": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_m_crowdpose.py', 'm_crowdpose'],
    "DETRPose-L-CrowdPose": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_l_crowdpose.py', 'l_crowdpose'],
    "DETRPose-X-CrowdPose": ['./DETRPose/configs/detrpose/detrpose_hgnetv2_x_crowdpose.py', 'x_crowdpose'],
}

transforms = T.Compose(
        [
            T.Resize((640, 640)),
            T.ToTensor(),
        ]
    )

example_images = [
    ["assets/example1.jpg"],
    ["assets/example2.jpg"],
]

description = """
<h1 align="center">
  <ins>DETRPose</ins>
  <br>
  Real-time end-to-end transformer model for multi-person pose estimation
</h1>

<h2 align="center">
<a href="https://www.linkedin.com/in/sebastianjr/">Sebastian Janampa</a> 
and 
<a href="https://www.linkedin.com/in/marios-pattichis-207b0119/">Marios Pattichis</a>
</h2>

<h2 align="center">  
    <a href="https://github.com/SebastianJanampa/DETRPose.git">GitHub</a> |
    <a href="https://colab.research.google.com/github/SebastianJanampa/DETRPose/blob/main/DETRPose_tutorial.ipynb">Colab</a>
</h2>


## Getting Started

DETRPose is the first real-time end-to-end transformer model for multi-person pose estimation, 
achieving outstanding results on the COCO and CrowdPose datasets. In this work, we propose a 
new denoising technique suitable for pose estimation that uses the Object Keypoint Similarity (OKS) metric 
to generate positive and negative queries. Additionally, we develop a new classification head 
and a new classification loss that are variations of the LQE head and the varifocal loss used in D-FINE.

To get started, upload an image or select one of the examples below. 
You can choose between different model size, change the confidence threshold and visualize the results.

### Acknowledgement

This work has been supported by [LambdaLab](https://lambda.ai)
"""

def create_model(model_name):
    config_path = DETRPOSE_MODELS[model_name][0]
    model_name = DETRPOSE_MODELS[model_name][1]
    
    cfg = LazyConfig.load(config_path)
    if hasattr(cfg.model.backbone, 'pretrained'):
        cfg.model.backbone.pretrained = False

    download_url = f"https://github.com/SebastianJanampa/DETRPose/releases/download/model_weights/detrpose_hgnetv2_{model_name}.pth"
    state_dict = torch.hub.load_state_dict_from_url(
            download_url, map_location="cpu", file_name=f"detrpose_hgnetv2_{model_name}.pth"
        )

    model = instantiate(cfg.model)
    postprocessor = instantiate(cfg.postprocessor)

    model.load_state_dict(state_dict['model'], strict=True)

    class Model(nn.Module):
      def __init__(self):
        super().__init__()
        self.model = model.deploy()
        self.postprocessor = postprocessor.deploy()

      def forward(self, images, orig_target_sizes):
        outputs = self.model(images)
        outputs = self.postprocessor(outputs, orig_target_sizes)
        return outputs

    model = Model()
    model.eval()

    global Drawer
    if 'crowdpose' in model_name:
        Drawer = AnnotatorCrowdpose
    else:
        Drawer = Annotator

    return model#, Drawer

def draw(image, scores, labels, keypoints, h, w, thrh):
    annotator = Drawer(deepcopy(image))
    for kpt, score in zip(keypoints, scores):
        if score > thrh:
            annotator.kpts(
                kpt,
                [h, w]
                )

    annotated_image = annotator.result()

    return annotated_image[..., ::-1]

def filter(lines, scores, threshold):
    filtered_lines, filter_scores = [], []
    for line, scr in zip(lines, scores):
        idx = scr > threshold
        filtered_lines.append(line[idx])
        filter_scores.append(scr[idx])
    return filtered_lines, filter_scores

def process_results(
    image_path,
    model_size, 
    threshold
    ):
    """ Process the image an returns the detected lines """
    if image_path is None:
        raise gr.Error("Please upload an image first.")

    model = create_model(model_size)

    im_pil = Image.open(image_path).convert("RGB")
    w, h = im_pil.size
    orig_size = torch.tensor([[w, h]])

    im_data = transforms(im_pil).unsqueeze(0)

    output = model(im_data, orig_size)
    scores, labels, keypoints = output

    scores, labels, keypoints = scores[0], labels[0], keypoints[0]

    annotated_image = draw(im_pil, scores, labels, keypoints, h, w, thrh=threshold)

    return annotated_image, (scores, labels, keypoints, h, w)

def update_threshold(
    image_path, 
    raw_results,
    threshold
    ):
    scores, labels, keypoints, h, w = raw_results
    im_pil = Image.open(image_path).convert("RGB")

    annotated_image = draw(im_pil, scores, labels, keypoints, h, w, thrh=threshold)
    return annotated_image

def update_model(
    image_path,
    model_size, 
    threshold
    ):
    if image_path is None:
        raise gr.Error("Please upload an image first.")
        return None, None, None

    return process_results(image_path, model_size, threshold)

def main():
    global Drawer

    # Create the Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                gr.Markdown("""## Input Image""")
                image_path = gr.Image(label="Upload image", type="filepath")
                model_size = gr.Dropdown(
                    choices=list(DETRPOSE_MODELS.keys()), label="Choose a DETRPose model.", value="DETRPose-M"
                )
                threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    interactive=True,
                    value=0.50,
                )

                submit_btn = gr.Button("Detect Human Keypoints")
                gr.Examples(examples=example_images, inputs=[image_path, model_size])

            with gr.Column():
                gr.Markdown("""## Results""")
                image_output = gr.Image(label="Detected Human Keypoints")

        # Define the action when the button is clicked
        raw_results = gr.State()

        plot_inputs = [
            raw_results,
            threshold,
        ]

        submit_btn.click(
            fn=process_results,
            inputs=[image_path, model_size] + plot_inputs[1:],
            outputs=[image_output, raw_results],
        )

        # Define the action when the plot checkboxes are clicked
        threshold.change(fn=update_threshold, inputs=[image_path] + plot_inputs, outputs=[image_output])
    demo.launch()

if __name__ == "__main__":
    main()