Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import chainlit as cl
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
# LangChain imports for retrieval and generation
|
6 |
+
from langchain.document_loaders import WebBaseLoader
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
|
13 |
+
# Load environment variables (e.g., OPENAI_API_KEY)
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Global variable to store our QA chain.
|
17 |
+
qa_chain = None
|
18 |
+
|
19 |
+
@cl.on_chat_start
|
20 |
+
async def start_chat():
|
21 |
+
"""
|
22 |
+
When the chat starts, load the document using WebBaseLoader, split it into chunks,
|
23 |
+
create embeddings, build a vector store, and finally initialize a RetrievalQA chain.
|
24 |
+
This chain will serve as the backend for our RAG system.
|
25 |
+
"""
|
26 |
+
global qa_chain
|
27 |
+
|
28 |
+
# URL to crawl (German Wikipedia page on Künstliche Intelligenz)
|
29 |
+
url = "https://de.wikipedia.org/wiki/K%C3%BCnstliche_Intelligenz"
|
30 |
+
|
31 |
+
# Retrieve the document from the webpage
|
32 |
+
loader = WebBaseLoader(url)
|
33 |
+
documents = loader.load() # returns a list of Document objects
|
34 |
+
|
35 |
+
# Split the document into manageable chunks for better retrieval
|
36 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
37 |
+
docs = text_splitter.split_documents(documents)
|
38 |
+
|
39 |
+
# Create embeddings (make sure your OPENAI_API_KEY is set in your environment)
|
40 |
+
embeddings = OpenAIEmbeddings()
|
41 |
+
|
42 |
+
# Build a vector store from the documents using FAISS
|
43 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
44 |
+
|
45 |
+
# Configure the retriever: retrieve the top 3 most relevant chunks
|
46 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
47 |
+
|
48 |
+
# Set up the language model (using OpenAI LLM here) with desired parameters
|
49 |
+
llm = OpenAI(temperature=0)
|
50 |
+
|
51 |
+
# Create a RetrievalQA chain that first retrieves relevant context and then generates an answer.
|
52 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
53 |
+
|
54 |
+
await cl.Message(
|
55 |
+
content="✅ Document loaded and processed successfully! "
|
56 |
+
"You can now ask me questions about 'Künstliche Intelligenz'."
|
57 |
+
).send()
|
58 |
+
|
59 |
+
@cl.on_message
|
60 |
+
async def process_question(message: cl.Message):
|
61 |
+
"""
|
62 |
+
When a message is received, use the QA chain to process the query. The chain:
|
63 |
+
1. Retrieves relevant document chunks.
|
64 |
+
2. Augments your query with the retrieved context.
|
65 |
+
3. Generates an answer via the language model.
|
66 |
+
"""
|
67 |
+
global qa_chain
|
68 |
+
|
69 |
+
if qa_chain is None:
|
70 |
+
await cl.Message(content="❌ The document has not been loaded yet.").send()
|
71 |
+
return
|
72 |
+
|
73 |
+
# Get the user's query
|
74 |
+
query = message.content.strip()
|
75 |
+
|
76 |
+
# Process the query using the RetrievalQA chain
|
77 |
+
result = qa_chain.run(query)
|
78 |
+
|
79 |
+
# Send the answer back to the user
|
80 |
+
await cl.Message(content=result).send()
|