Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import numpy as np
|
6 |
+
import google.generativeai as genai
|
7 |
+
import os
|
8 |
+
from io import StringIO
|
9 |
+
import json
|
10 |
+
|
11 |
+
st.set_page_config(layout="wide", page_title="Dynamic Data Dashboard")
|
12 |
+
|
13 |
+
def main():
|
14 |
+
st.title("Dynamic Data Dashboard Generator")
|
15 |
+
st.markdown("""
|
16 |
+
Upload your CSV file to generate an interactive dashboard tailored to your data.
|
17 |
+
The application uses AI to analyze your data and create relevant visualizations.
|
18 |
+
""")
|
19 |
+
|
20 |
+
# API key input with validation
|
21 |
+
api_key_input = st.sidebar.text_input("Enter your Gemini API key for more power", type="password")
|
22 |
+
api_key = api_key_input or os.getenv("GEMINI_API_KEY")
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
try:
|
28 |
+
# Read and display data
|
29 |
+
df = pd.read_csv(uploaded_file)
|
30 |
+
with st.expander("Preview Data", expanded=True):
|
31 |
+
st.dataframe(df.head(10))
|
32 |
+
|
33 |
+
# Basic data info
|
34 |
+
st.subheader("Data Overview")
|
35 |
+
col1, col2 = st.columns(2)
|
36 |
+
with col1:
|
37 |
+
st.metric("Rows", df.shape[0])
|
38 |
+
st.metric("Columns", df.shape[1])
|
39 |
+
with col2:
|
40 |
+
st.metric("Numerical Columns", len(df.select_dtypes(include=np.number).columns))
|
41 |
+
st.metric("Categorical Columns", len(df.select_dtypes(exclude=np.number).columns))
|
42 |
+
|
43 |
+
# If API key is provided, use Gemini for analysis
|
44 |
+
if api_key:
|
45 |
+
st.subheader("AI-Powered Dashboard")
|
46 |
+
with st.spinner("Analyzing your data and generating visualizations..."):
|
47 |
+
try:
|
48 |
+
generate_ai_dashboard(df, api_key)
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error generating AI dashboard: {e}")
|
51 |
+
|
52 |
+
# Standard visualizations
|
53 |
+
st.subheader("Standard Visualizations")
|
54 |
+
generate_standard_dashboard(df)
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
st.error(f"Error processing your file: {e}")
|
58 |
+
|
59 |
+
def generate_standard_dashboard(df):
|
60 |
+
"""Generate standard visualizations based on data types"""
|
61 |
+
# Identify numerical and categorical columns
|
62 |
+
numerical_cols = df.select_dtypes(include=np.number).columns.tolist()
|
63 |
+
categorical_cols = df.select_dtypes(exclude=np.number).columns.tolist()
|
64 |
+
|
65 |
+
# Data completeness
|
66 |
+
st.subheader("Data Completeness")
|
67 |
+
missing_data = pd.DataFrame({'column': df.columns,
|
68 |
+
'missing_values': df.isnull().sum(),
|
69 |
+
'percentage': (df.isnull().sum() / len(df) * 100).round(2)})
|
70 |
+
fig = px.bar(missing_data, x='column', y='percentage',
|
71 |
+
title='Missing Values Percentage',
|
72 |
+
labels={'percentage': 'Missing Values (%)', 'column': 'Column'})
|
73 |
+
st.plotly_chart(fig, use_container_width=True)
|
74 |
+
|
75 |
+
# Distribution of numerical columns
|
76 |
+
if numerical_cols:
|
77 |
+
st.subheader("Numerical Distributions")
|
78 |
+
selected_num_col = st.selectbox("Select a numerical column", numerical_cols)
|
79 |
+
|
80 |
+
col1, col2 = st.columns(2)
|
81 |
+
with col1:
|
82 |
+
fig = px.histogram(df, x=selected_num_col, title=f'Distribution of {selected_num_col}')
|
83 |
+
st.plotly_chart(fig, use_container_width=True)
|
84 |
+
|
85 |
+
with col2:
|
86 |
+
fig = px.box(df, y=selected_num_col, title=f'Box Plot of {selected_num_col}')
|
87 |
+
st.plotly_chart(fig, use_container_width=True)
|
88 |
+
|
89 |
+
# Distribution of categorical columns
|
90 |
+
if categorical_cols:
|
91 |
+
st.subheader("Categorical Distributions")
|
92 |
+
selected_cat_col = st.selectbox("Select a categorical column", categorical_cols)
|
93 |
+
|
94 |
+
# Limit to top 10 categories for readability
|
95 |
+
value_counts = df[selected_cat_col].value_counts().nlargest(10)
|
96 |
+
fig = px.bar(x=value_counts.index, y=value_counts.values,
|
97 |
+
title=f'Top 10 Categories in {selected_cat_col}',
|
98 |
+
labels={'x': selected_cat_col, 'y': 'Count'})
|
99 |
+
st.plotly_chart(fig, use_container_width=True)
|
100 |
+
|
101 |
+
# Correlation heatmap for numerical data
|
102 |
+
if len(numerical_cols) > 1:
|
103 |
+
st.subheader("Correlation Between Numerical Variables")
|
104 |
+
corr = df[numerical_cols].corr()
|
105 |
+
fig = px.imshow(corr, text_auto=True, aspect="auto",
|
106 |
+
title="Correlation Heatmap")
|
107 |
+
st.plotly_chart(fig, use_container_width=True)
|
108 |
+
|
109 |
+
# Scatter plot for exploring relationships
|
110 |
+
if len(numerical_cols) >= 2:
|
111 |
+
st.subheader("Explore Relationships")
|
112 |
+
col1, col2 = st.columns(2)
|
113 |
+
with col1:
|
114 |
+
x_col = st.selectbox("X-axis", numerical_cols, index=0)
|
115 |
+
with col2:
|
116 |
+
y_col = st.selectbox("Y-axis", numerical_cols, index=min(1, len(numerical_cols)-1))
|
117 |
+
|
118 |
+
color_col = None
|
119 |
+
if categorical_cols:
|
120 |
+
color_col = st.selectbox("Color by (optional)", ['None'] + categorical_cols)
|
121 |
+
if color_col == 'None':
|
122 |
+
color_col = None
|
123 |
+
|
124 |
+
fig = px.scatter(df, x=x_col, y=y_col, color=color_col,
|
125 |
+
title=f'{y_col} vs {x_col}',
|
126 |
+
opacity=0.7)
|
127 |
+
st.plotly_chart(fig, use_container_width=True)
|
128 |
+
|
129 |
+
def generate_ai_dashboard(df, api_key):
|
130 |
+
"""Use Gemini AI to analyze data and generate dashboard recommendations"""
|
131 |
+
# Configure Gemini
|
132 |
+
genai.configure(api_key=api_key)
|
133 |
+
model = genai.GenerativeModel('gemini-2.0-flash')
|
134 |
+
|
135 |
+
# Generate data summary
|
136 |
+
column_info = {col: {
|
137 |
+
'dtype': str(df[col].dtype),
|
138 |
+
'unique_values': df[col].nunique(),
|
139 |
+
'missing_values': df[col].isna().sum(),
|
140 |
+
'sample': df[col].dropna().sample(min(5, len(df))).tolist()
|
141 |
+
} for col in df.columns}
|
142 |
+
|
143 |
+
# Prepare prompt
|
144 |
+
full_prompt = f"""
|
145 |
+
Analyze the following dataset and suggest visualizations that would be insightful:
|
146 |
+
|
147 |
+
Dataset Summary:
|
148 |
+
- Rows: {df.shape[0]}
|
149 |
+
- Columns: {df.shape[1]}
|
150 |
+
|
151 |
+
Column Information:
|
152 |
+
{json.dumps(column_info, indent=2)}
|
153 |
+
|
154 |
+
Please provide visualization recommendations in the following JSON format:
|
155 |
+
{{
|
156 |
+
"insights": [
|
157 |
+
"Key insight about the data",
|
158 |
+
"Another insight about the data"
|
159 |
+
],
|
160 |
+
"visualizations": [
|
161 |
+
{{
|
162 |
+
"title": "Visualization Title",
|
163 |
+
"description": "What this visualization shows",
|
164 |
+
"type": "bar|line|scatter|pie|histogram|box|heatmap",
|
165 |
+
"x_column": "column_name_for_x_axis",
|
166 |
+
"y_column": "column_name_for_y_axis",
|
167 |
+
"color_column": "optional_column_for_color",
|
168 |
+
"facet_column": "optional_column_for_faceting"
|
169 |
+
}}
|
170 |
+
]
|
171 |
+
}}
|
172 |
+
|
173 |
+
Return ONLY the JSON, no other text.
|
174 |
+
"""
|
175 |
+
|
176 |
+
# Call Gemini API
|
177 |
+
response = model.generate_content(
|
178 |
+
full_prompt,
|
179 |
+
generation_config={"temperature": 0.3}
|
180 |
+
)
|
181 |
+
|
182 |
+
try:
|
183 |
+
# Try to parse the response as JSON
|
184 |
+
response_text = response.text
|
185 |
+
|
186 |
+
# Clean the response if it contains markdown code blocks
|
187 |
+
if "```json" in response_text:
|
188 |
+
response_text = response_text.split("```json")[1].split("```")[0].strip()
|
189 |
+
elif "```" in response_text:
|
190 |
+
response_text = response_text.split("```")[1].split("```")[0].strip()
|
191 |
+
|
192 |
+
recommendations = json.loads(response_text)
|
193 |
+
|
194 |
+
# Display AI insights
|
195 |
+
st.subheader("AI Insights")
|
196 |
+
for insight in recommendations.get("insights", []):
|
197 |
+
st.info(insight)
|
198 |
+
|
199 |
+
# Create visualizations
|
200 |
+
st.subheader("AI Recommended Visualizations")
|
201 |
+
for viz in recommendations.get("visualizations", []):
|
202 |
+
with st.expander(viz["title"], expanded=True):
|
203 |
+
st.write(viz["description"])
|
204 |
+
|
205 |
+
try:
|
206 |
+
x_col = viz.get("x_column")
|
207 |
+
y_col = viz.get("y_column")
|
208 |
+
color_col = viz.get("color_column")
|
209 |
+
viz_type = viz.get("type", "bar").lower()
|
210 |
+
|
211 |
+
if viz_type == "bar":
|
212 |
+
fig = px.bar(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
|
213 |
+
elif viz_type == "line":
|
214 |
+
fig = px.line(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
|
215 |
+
elif viz_type == "scatter":
|
216 |
+
fig = px.scatter(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
|
217 |
+
elif viz_type == "pie":
|
218 |
+
fig = px.pie(df, names=x_col, values=y_col, title=viz["title"])
|
219 |
+
elif viz_type == "histogram":
|
220 |
+
fig = px.histogram(df, x=x_col, color=color_col, title=viz["title"])
|
221 |
+
elif viz_type == "box":
|
222 |
+
fig = px.box(df, y=y_col, x=x_col, color=color_col, title=viz["title"])
|
223 |
+
elif viz_type == "heatmap":
|
224 |
+
pivot_table = pd.pivot_table(df, values=y_col, index=x_col, columns=color_col, aggfunc='mean')
|
225 |
+
fig = px.imshow(pivot_table, title=viz["title"])
|
226 |
+
else:
|
227 |
+
fig = px.bar(df, x=x_col, y=y_col, title=viz["title"])
|
228 |
+
|
229 |
+
st.plotly_chart(fig, use_container_width=True)
|
230 |
+
except Exception as e:
|
231 |
+
st.error(f"Could not create this visualization: {e}")
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
st.error(f"Could not parse AI recommendations: {e}")
|
235 |
+
st.code(response.text, language="json")
|
236 |
+
|
237 |
+
if __name__ == "__main__":
|
238 |
+
main()
|