File size: 16,309 Bytes
e0d120b
 
 
 
c3386dd
e0d120b
 
 
 
 
c3386dd
e0d120b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3386dd
e0d120b
 
 
 
c3386dd
e0d120b
 
 
 
 
 
 
 
 
 
c3386dd
 
e0d120b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import re
import io
import json
import streamlit as st
from PIL import Image, ImageDraw, ImageFont
from google import generativeai as genai # Renamed for clarity from 'google.genai'
from google.generativeai.types import GenerationConfig, HarmCategory, HarmBlockThreshold
from pdf2image import convert_from_bytes
from typing import List, Dict, Any, Tuple, Optional

# --- Constants ---
MODEL_NAME = "gemini-2.5-pro-exp-03-25" # Using Gemini 1.5 Flash

# Unified prompt to get bounding boxes and text content in one go
UNIFIED_DETECTION_EXTRACTION_PROMPT = """\
Analyze this document image. Identify text regions and extract the text from each region.

Follow these rules for text regions:
1. GROUP RELATED CONTENT:
    - Full tables as SINGLE regions (including headers and all rows).
    - Paragraphs as SINGLE rectangular blocks (multiple lines as one box).
    - Keep text columns intact.
    - Treat list items as single region if visually grouped.

2. TEXT REGION REQUIREMENTS:
    - Boundaries must tightly wrap text content.
    - Include approximately 2% padding around text clusters, but ensure the box stays within image bounds.
    - Exclude isolated decorative elements unless they contain text.
    - Merge adjacent text fragments with ≀1% spacing into a single region.

3. COORDINATE FORMAT:
    - Normalized coordinates (0.0 to 1.0) with 3 decimal places.
    - Format: [xmin, ymin, xmax, ymax].
    - Order: Top-to-bottom, then left-to-right.

4. SPECIAL CASES:
    - Table cells should NOT have individual boxes; the entire table is one box.
    - Page headers/footers as separate regions.
    - Text wrapped around images as distinct regions.

OUTPUT FORMAT:
Return a JSON list of objects. Each object MUST have:
- "box": A list of 4 normalized coordinates [xmin, ymin, xmax, ymax].
- "text": The extracted text string from that box. Ensure all text within the box is captured.

Example of a valid JSON response:
[
  {"box": [0.070, 0.120, 0.930, 0.280], "text": "Document Title and Header Information"},
  {"box": [0.120, 0.350, 0.880, 0.650], "text": "Table content including headers and all rows..."},
  {"box": [0.100, 0.700, 0.900, 0.850], "text": "This is the first paragraph of text, potentially spanning multiple lines but grouped as one logical block."},
  {"box": [0.100, 0.880, 0.900, 0.950], "text": "Another paragraph or distinct text block."}
]

ONLY RETURN THE VALID JSON LIST. No explanations, apologies, or other text outside the JSON structure.
If no text regions are found, return an empty JSON list: [].
"""

# --- Helper Functions ---

def get_gemini_api_key() -> Optional[str]:
    """Gets the Gemini API key from Streamlit secrets, environment variables, or user input."""
    if "GOOGLE_API_KEY" in st.secrets:
        return st.secrets["GOOGLE_API_KEY"]
    api_key_env = os.getenv("GOOGLE_API_KEY")
    if api_key_env:
        return api_key_env
    
    st.sidebar.warning("Google API Key not found in secrets or environment variables.")
    api_key_input = st.sidebar.text_input(
        "Enter your Google API Key:", type="password", key="api_key_input"
    )
    if api_key_input:
        st.session_state.GOOGLE_API_KEY = api_key_input
        return api_key_input
    return None

def parse_gemini_response(response_text: str) -> List[Dict[str, Any]]:
    """
    Parses the Gemini response to extract a list of dicts with "box" and "text".
    Tries to load as JSON, falls back to regex if needed (though ideally not).
    """
    try:
        # Attempt to find JSON block if model wraps it in markdown
        match = re.search(r"```json\s*([\s\S]*?)\s*```", response_text, re.DOTALL)
        if match:
            json_str = match.group(1)
        else:
            # Assume the response is plain JSON or a Python list string
            json_str = response_text.strip()
            if not (json_str.startswith('[') and json_str.endswith(']')):
                 # If it doesn't look like a list, try to find the list within the text
                list_match = re.search(r'(\[[\s\S]*\])', json_str)
                if list_match:
                    json_str = list_match.group(1)
                else:
                    st.warning(f"Response doesn't appear to be a list: {response_text[:200]}...")
                    return []


        # Try direct JSON parsing
        parsed_data = json.loads(json_str)
        if isinstance(parsed_data, list):
            # Validate structure
            validated_data = []
            for item in parsed_data:
                if isinstance(item, dict) and "box" in item and "text" in item and \
                   isinstance(item["box"], list) and len(item["box"]) == 4:
                    validated_data.append(item)
                else:
                    st.warning(f"Skipping invalid item in JSON: {item}")
            return validated_data
        else:
            st.warning(f"Parsed JSON is not a list: {type(parsed_data)}")
            return []

    except json.JSONDecodeError as e:
        st.warning(f"JSONDecodeError: {e}. Raw response: {response_text[:500]}")
        # Fallback to regex if JSON parsing fails (less robust)
        # This regex assumes the "box" and "text" structure as described in the prompt
        # It's a simplified regex for demonstration and might need adjustment for complex texts.
        regions = []
        # Regex to find "box": [coords], "text": "content"
        # This is a simplified regex and might struggle with escaped quotes in text
        pattern = r'\{\s*"box"\s*:\s*\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]\s*,\s*"text"\s*:\s*"(.*?)"\s*\}'
        matches = re.findall(pattern, response_text, re.DOTALL)
        for match in matches:
            try:
                box = [float(c) for c in match[:4]]
                text = match[4].replace('\\n', '\n').replace('\\"', '"') # Handle basic escapes
                regions.append({"box": box, "text": text})
            except ValueError:
                st.warning(f"Could not parse box coordinates from regex match: {match}")
        if not regions and response_text.strip() and response_text.strip() != "[]":
             st.error(f"Failed to parse response using JSON and regex. Raw: {response_text[:200]}")
        return regions
    except Exception as e:
        st.error(f"Error parsing Gemini response: {e}. Raw response: {response_text[:500]}")
        return []


def draw_bounding_boxes(image: Image.Image, regions: List[Dict[str, Any]]) -> Image.Image:
    """Draws numbered bounding boxes on the image."""
    if not regions:
        return image

    draw = ImageDraw.Draw(image)
    width, height = image.size
    
    try:
        # Try to load a common font, fall back to default
        font = ImageFont.truetype("arial.ttf", int(height * 0.02))  # Adjust size as needed
    except IOError:
        font = ImageFont.load_default()

    for i, region_data in enumerate(regions):
        try:
            box = region_data.get("box")
            if not (isinstance(box, list) and len(box) == 4):
                st.warning(f"Skipping invalid box data for region {i+1}: {box}")
                continue

            # Convert normalized coordinates to pixel values, clamping to image bounds
            xmin = max(0.0, min(1.0, box[0])) * width
            ymin = max(0.0, min(1.0, box[1])) * height
            xmax = max(0.0, min(1.0, box[2])) * width
            ymax = max(0.0, min(1.0, box[3])) * height

            if xmin >= xmax or ymin >= ymax:
                st.warning(f"Skipping invalid box dimensions for region {i+1}: {[xmin, ymin, xmax, ymax]}")
                continue

            draw.rectangle([xmin, ymin, xmax, ymax], outline="#00FF00", width=3)
            label = str(i + 1)
            
            # Position label inside the box, handle potential small boxes
            text_x = xmin + 5
            text_y = ymin + 5
            
            # For very small boxes, drawing text might be an issue, but let's try
            text_bbox = draw.textbbox((text_x, text_y), label, font=font)
            text_width = text_bbox[2] - text_bbox[0]
            text_height = text_bbox[3] - text_bbox[1]

            # Simple check to ensure text fits somewhat
            if text_x + text_width > xmax - 5:
                text_x = max(xmin, xmax - text_width - 5)
            if text_y + text_height > ymax - 5:
                text_y = max(ymin, ymax - text_height - 5)
            
            draw.text((text_x, text_y), label, fill="red", font=font)

        except Exception as e:
            st.error(f"Error drawing box for region {i+1}: {str(e)}")
    return image

def process_image_with_gemini(
    client: genai.GenerativeModel, image_bytes: bytes
) -> Tuple[List[Dict[str, Any]], str]:
    """Sends image to Gemini and gets bounding boxes and text."""
    try:
        response = client.generate_content(
            contents=[
                UNIFIED_DETECTION_EXTRACTION_PROMPT,
                {"mime_type": "image/png", "data": image_bytes}
            ],
            generation_config=GenerationConfig(
                temperature=0.1, # Lower temperature for more deterministic output
                # max_output_tokens=8192 # Max for flash 1.5
            ),
            safety_settings={ # Adjust as needed
                HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
                HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
            }
        )
        if response.parts:
            raw_text_response = response.text # .text often combines parts
        else: # Fallback if .text is empty but candidates exist
            raw_text_response = response.candidates[0].content.parts[0].text if response.candidates and response.candidates[0].content.parts else ""
        
        if not raw_text_response:
            st.error("Received empty response from Gemini API.")
            return [], ""
            
        regions = parse_gemini_response(raw_text_response)
        return regions, raw_text_response
    except Exception as e:
        st.error(f"Error calling Gemini API: {str(e)}")
        if hasattr(e, 'response') and e.response: # For google.api_core.exceptions
            st.error(f"API Response Error Details: {e.response}")
        return [], f"API Error: {str(e)}"

# --- Streamlit UI ---
st.set_page_config(layout="wide")
st.title("πŸ“„ PDF Text Detection & Extraction with Gemini")

# --- API Key Configuration ---
st.sidebar.header("πŸ”‘ API Configuration")
api_key = get_gemini_api_key()
gemini_client = None

if api_key:
    try:
        genai.configure(api_key=api_key)
        gemini_client = genai.GenerativeModel(MODEL_NAME)
        st.sidebar.success("Gemini API Key configured.")
    except Exception as e:
        st.sidebar.error(f"Failed to configure Gemini: {e}")
        api_key = None # Invalidate API key if configuration fails
else:
    st.sidebar.info("Please provide your Google API Key to use the application.")
    st.info("Please enter your Google API Key in the sidebar to proceed.")


# --- File Upload and Processing ---
st.header("πŸ“€ Upload PDF")
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
dpi_options = [150, 200, 300, 400]
selected_dpi = st.select_slider(
    "Select DPI for PDF to Image conversion:",
    options=dpi_options,
    value=200 # Default DPI
)

if uploaded_file and st.button("πŸš€ Analyze PDF", disabled=not api_key or not gemini_client):
    if not api_key or not gemini_client:
        st.error("API Key not configured. Please enter it in the sidebar.")
    else:
        with st.spinner(f"Processing PDF ({uploaded_file.name})... This may take a moment."):
            try:
                pdf_bytes = uploaded_file.read()
                pil_images: List[Image.Image] = convert_from_bytes(pdf_bytes, dpi=selected_dpi)
                
                if not pil_images:
                    st.warning("Could not extract any images from the PDF.")
                else:
                    st.success(f"PDF converted to {len(pil_images)} image(s). Analyzing with Gemini...")

                    page_results = []
                    for i, p_image in enumerate(pil_images):
                        page_progess = st.progress(0, text=f"Processing Page {i+1}/{len(pil_images)}...")
                        
                        # Convert PIL image to bytes for API
                        img_byte_arr = io.BytesIO()
                        p_image.save(img_byte_arr, format='PNG')
                        img_bytes = img_byte_arr.getvalue()
                        page_progess.progress(30, text=f"Page {i+1}: Sending to Gemini...")

                        regions, raw_response = process_image_with_gemini(gemini_client, img_bytes)
                        page_progess.progress(90, text=f"Page {i+1}: Received response.")
                        
                        page_results.append({
                            "original_image": p_image,
                            "regions": regions,
                            "raw_response": raw_response
                        })
                        page_progess.progress(100, text=f"Page {i+1}: Done.")
                        page_progess.empty()

                    # Store results in session state to avoid re-processing on minor UI interaction
                    # Though with the button click, this is less critical for single runs.
                    st.session_state.page_results = page_results

            except Exception as e:
                st.error(f"An error occurred during PDF processing: {str(e)}")
                if "page_results" in st.session_state:
                    del st.session_state.page_results # Clear partial results

# --- Display Results ---
if "page_results" in st.session_state and st.session_state.page_results:
    st.header("πŸ“Š Analysis Results")
    results = st.session_state.page_results
    
    tab_titles = [f"Page {i+1}" for i in range(len(results))]
    tabs = st.tabs(tab_titles)

    for idx, (tab, page_data) in enumerate(zip(tabs, results)):
        with tab:
            st.subheader(f"Page {idx + 1} Analysis")
            original_image = page_data["original_image"]
            regions = page_data["regions"]
            raw_response = page_data["raw_response"]

            col1, col2 = st.columns(2)

            with col1:
                st.image(original_image, caption="Original Image", use_container_width=True)

            with col2:
                if regions:
                    annotated_image = draw_bounding_boxes(original_image.copy(), regions)
                    st.image(annotated_image, caption=f"Detected {len(regions)} Text Regions", use_container_width=True)
                else:
                    st.image(original_image.copy(), caption="No text regions detected by model", use_container_width=True)
                    st.warning("No text regions were successfully parsed from the model's response for this page.")

            if regions:
                st.subheader("πŸ“ Extracted Texts & Regions")
                for i, region_data in enumerate(regions):
                    box = region_data.get("box", "N/A")
                    text_content = region_data.get("text", "No text extracted for this region.")
                    with st.expander(f"Region {i+1} (Box: {box})", expanded= (i<3) ): # Expand first 3 by default
                        st.markdown(f"**Coordinates:** `{box}`")
                        st.markdown("**Text:**")
                        st.text_area(f"text_area_{idx}_{i}", text_content, height=max(100, int(len(text_content)*0.5)), disabled=True, label_visibility="collapsed")
            else:
                st.info("No text regions to display for this page.")

            with st.expander("πŸ” Debug: Raw Gemini API Response", expanded=False):
                st.code(raw_response, language='json')

elif uploaded_file and not api_key:
    st.warning("Please enter your API key in the sidebar and click 'Analyze PDF' again.")

st.markdown("---")
st.markdown("Developed with Gemini & Streamlit.")