Sebbe33's picture
Update app.py
d57a6ad verified
raw
history blame
5.15 kB
import os
import re
import io
import streamlit as st
from PIL import Image, ImageDraw
from google import genai
from google.genai import types
# Hilfsfunktionen
def parse_list_boxes(text):
"""Extrahiert Bounding Boxes aus dem Antworttext"""
pattern = r'\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]'
matches = re.findall(pattern, text)
return [[float(m) for m in match] for match in matches]
def draw_bounding_boxes(image, boxes):
"""Zeichnet Bounding Boxes auf das Bild"""
draw = ImageDraw.Draw(image)
width, height = image.size
for box in boxes:
# Sicherstellen, dass alle Werte zwischen 0-1 liegen
ymin = max(0.0, min(1.0, box[0]))
xmin = max(0.0, min(1.0, box[1]))
ymax = max(0.0, min(1.0, box[2]))
xmax = max(0.0, min(1.0, box[3]))
# Zeichne den Rahmen
draw.rectangle([
xmin * width,
ymin * height,
xmax * width,
ymax * height
], outline="#00FF00", width=7) # Neon green mit dicken Linien
return image
# Streamlit UI
st.title("Bildanalyse mit Gemini")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Bild hochladen", type=["jpg", "png", "jpeg"])
object_name = st.text_input("Objekt zur Erkennung", placeholder="z.B. 'Auto', 'Person'")
if uploaded_file and object_name:
image = Image.open(uploaded_file)
width, height = image.size
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
if st.button("Analysieren"):
with st.spinner("Analysiere Bild..."):
try:
# Bildvorbereitung
image_bytes = io.BytesIO()
image.save(image_bytes, format=image.format)
image_part = types.Part.from_bytes(
data=image_bytes.getvalue(),
mime_type=f"image/{image.format.lower()}"
)
# API-Client
client = genai.Client(api_key=os.getenv("KEY"))
# Bildbeschreibung
desc_response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents=["Beschreibe dieses Bild detailliert.", image_part]
)
# Objekterkennung
detection_prompt = (
f"Gib exakt 4 Dezimalzahlen pro Box für alle {object_name} im Format "
"[ymin, xmin, ymax, xmax] als reine Python-Liste ohne weiteren Text. "
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
)
box_response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents=[detection_prompt, image_part]
)
# Debug-Ausgaben
st.write("**Raw API Response:**", box_response.text)
# Verarbeitung
try:
boxes = parse_list_boxes(box_response.text)
st.write("**Parsed Boxes:**", boxes)
except Exception as e:
st.error(f"Parsing Error: {str(e)}")
boxes = []
annotated_image = image.copy()
if boxes:
annotated_image = draw_bounding_boxes(annotated_image, boxes)
result_text = f"{len(boxes)} {object_name} erkannt"
# Zoom auf erste Box
ymin, xmin, ymax, xmax = boxes[0]
zoom_area = (
max(0, int(xmin * width - 50)),
max(0, int(ymin * height - 50)),
min(width, int(xmax * width + 50)),
min(height, int(ymax * height + 50))
)
zoomed_image = annotated_image.crop(zoom_area)
else:
result_text = "Keine Objekte gefunden"
zoomed_image = None
# Ergebnisse anzeigen
with col2:
st.write("## Objekterkennung:")
st.write(result_text)
if boxes:
st.image(
[annotated_image, zoomed_image],
caption=["Gesamtbild", "Zoom auf Erkennung"],
width=400
)
else:
st.image(annotated_image, caption="Keine Objekte erkannt", width=400)
st.write("## Beschreibung:")
st.write(desc_response.text)
except Exception as e:
st.error(f"Fehler: {str(e)}")