Spaces:
Running
Running
import os | |
import re | |
import io | |
import streamlit as st | |
from PIL import Image, ImageDraw | |
from google import genai | |
from google.genai import types | |
# Hilfsfunktionen | |
def parse_list_boxes(text): | |
"""Extrahiert Bounding Boxes aus dem Antworttext""" | |
pattern = r'\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]' | |
matches = re.findall(pattern, text) | |
return [[float(m) for m in match] for match in matches] | |
def draw_bounding_boxes(image, boxes): | |
"""Zeichnet Bounding Boxes auf das Bild""" | |
draw = ImageDraw.Draw(image) | |
width, height = image.size | |
for box in boxes: | |
# Sicherstellen, dass alle Werte zwischen 0-1 liegen | |
ymin = max(0.0, min(1.0, box[0])) | |
xmin = max(0.0, min(1.0, box[1])) | |
ymax = max(0.0, min(1.0, box[2])) | |
xmax = max(0.0, min(1.0, box[3])) | |
# Zeichne den Rahmen | |
draw.rectangle([ | |
xmin * width, | |
ymin * height, | |
xmax * width, | |
ymax * height | |
], outline="#00FF00", width=7) # Neon green mit dicken Linien | |
return image | |
# Streamlit UI | |
st.title("Objekterkennung mit Gemini") | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_file = st.file_uploader("Bild hochladen", type=["jpg", "png", "jpeg"]) | |
object_name = st.text_input("Objekt zur Erkennung", placeholder="z.B. 'Auto', 'Person'") | |
if uploaded_file and object_name: | |
image = Image.open(uploaded_file) | |
width, height = image.size | |
st.image(image, caption="Hochgeladenes Bild", use_container_width=True) | |
if st.button("Analysieren"): | |
with st.spinner("Analysiere Bild..."): | |
try: | |
# Bildvorbereitung | |
image_bytes = io.BytesIO() | |
image.save(image_bytes, format=image.format) | |
image_part = types.Part.from_bytes( | |
data=image_bytes.getvalue(), | |
mime_type=f"image/{image.format.lower()}" | |
) | |
# API-Client | |
client = genai.Client(api_key=os.getenv("KEY")) | |
# Bildbeschreibung | |
desc_response = client.models.generate_content( | |
model="gemini-2.0-flash-exp", | |
contents=["Beschreibe dieses Bild detailliert.", image_part] | |
) | |
# Objekterkennung | |
detection_prompt = ( | |
f"Gib exakt 4 Dezimalzahlen pro Box für alle {object_name} im Format " | |
"[ymin, xmin, ymax, xmax] als reine Python-Liste ohne weiteren Text. " | |
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]" | |
) | |
box_response = client.models.generate_content( | |
model="gemini-2.0-flash-exp", | |
contents=[detection_prompt, image_part] | |
) | |
# Verarbeitung | |
try: | |
boxes = parse_list_boxes(box_response.text) | |
st.write("**Parsed Boxes:**", boxes) | |
except Exception as e: | |
st.error(f"Parsing Error: {str(e)}") | |
boxes = [] | |
annotated_image = image.copy() | |
if boxes: | |
annotated_image = draw_bounding_boxes(annotated_image, boxes) | |
result_text = f"{len(boxes)} {object_name} erkannt" | |
# Zoom auf erste Box | |
ymin, xmin, ymax, xmax = boxes[0] | |
zoom_area = ( | |
max(0, int(xmin * width - 50)), | |
max(0, int(ymin * height - 50)), | |
min(width, int(xmax * width + 50)), | |
min(height, int(ymax * height + 50)) | |
) | |
zoomed_image = annotated_image.crop(zoom_area) | |
else: | |
result_text = "Keine Objekte gefunden" | |
zoomed_image = None | |
# Ergebnisse anzeigen | |
with col2: | |
st.write("## Objekterkennung:") | |
st.write(result_text) | |
if boxes: | |
st.image( | |
[annotated_image, zoomed_image], | |
caption=["Gesamtbild", "Zoom auf Erkennung"], | |
width=400 | |
) | |
else: | |
st.image(annotated_image, caption="Keine Objekte erkannt", width=400) | |
st.write("## Beschreibung:") | |
st.write(desc_response.text) | |
except Exception as e: | |
st.error(f"Fehler: {str(e)}") |