Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,20 +13,6 @@ def parse_list_boxes(text):
|
|
13 |
matches = re.findall(pattern, text)
|
14 |
return [[float(m) for m in match] for match in matches]
|
15 |
|
16 |
-
'''def draw_bounding_boxes(image, boxes):
|
17 |
-
"""Zeichnet Bounding Boxes auf das Bild"""
|
18 |
-
draw = ImageDraw.Draw(image)
|
19 |
-
width, height = image.size
|
20 |
-
for box in boxes:
|
21 |
-
ymin, xmin, ymax, xmax = box
|
22 |
-
draw.rectangle([
|
23 |
-
xmin * width,
|
24 |
-
ymin * height,
|
25 |
-
xmax * width,
|
26 |
-
ymax * height
|
27 |
-
], outline="red", width=3)
|
28 |
-
return image'''
|
29 |
-
|
30 |
def draw_bounding_boxes(image, boxes):
|
31 |
"""Zeichnet Bounding Boxes auf das Bild"""
|
32 |
draw = ImageDraw.Draw(image)
|
@@ -39,15 +25,15 @@ def draw_bounding_boxes(image, boxes):
|
|
39 |
ymax = max(0.0, min(1.0, box[2]))
|
40 |
xmax = max(0.0, min(1.0, box[3]))
|
41 |
|
|
|
42 |
draw.rectangle([
|
43 |
xmin * width,
|
44 |
ymin * height,
|
45 |
xmax * width,
|
46 |
ymax * height
|
47 |
-
], outline="
|
48 |
return image
|
49 |
|
50 |
-
|
51 |
# Streamlit UI
|
52 |
st.title("Bildanalyse mit Gemini")
|
53 |
col1, col2 = st.columns(2)
|
@@ -58,6 +44,7 @@ with col1:
|
|
58 |
|
59 |
if uploaded_file and object_name:
|
60 |
image = Image.open(uploaded_file)
|
|
|
61 |
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
|
62 |
|
63 |
if st.button("Analysieren"):
|
@@ -82,34 +69,62 @@ with col1:
|
|
82 |
|
83 |
# Objekterkennung
|
84 |
detection_prompt = (
|
85 |
-
f"Gib
|
86 |
-
"[ymin, xmin, ymax, xmax] als Liste
|
|
|
87 |
)
|
88 |
box_response = client.models.generate_content(
|
89 |
model="gemini-2.0-flash-exp",
|
90 |
contents=[detection_prompt, image_part]
|
91 |
)
|
92 |
-
st.write("Raw API Response:", box_response.text)
|
93 |
|
|
|
|
|
|
|
94 |
# Verarbeitung
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
annotated_image = image.copy()
|
97 |
|
98 |
if boxes:
|
99 |
annotated_image = draw_bounding_boxes(annotated_image, boxes)
|
100 |
result_text = f"{len(boxes)} {object_name} erkannt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
else:
|
102 |
result_text = "Keine Objekte gefunden"
|
|
|
103 |
|
104 |
# Ergebnisse anzeigen
|
105 |
with col2:
|
106 |
-
st.write("## Objekterkennung:")
|
107 |
-
st.write(result_text)
|
108 |
-
st.image(annotated_image, caption="Erkannte Objekte", use_container_width=True)
|
109 |
-
|
110 |
st.write("## Beschreibung:")
|
111 |
st.write(desc_response.text)
|
112 |
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
except Exception as e:
|
115 |
st.error(f"Fehler: {str(e)}")
|
|
|
13 |
matches = re.findall(pattern, text)
|
14 |
return [[float(m) for m in match] for match in matches]
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def draw_bounding_boxes(image, boxes):
|
17 |
"""Zeichnet Bounding Boxes auf das Bild"""
|
18 |
draw = ImageDraw.Draw(image)
|
|
|
25 |
ymax = max(0.0, min(1.0, box[2]))
|
26 |
xmax = max(0.0, min(1.0, box[3]))
|
27 |
|
28 |
+
# Zeichne den Rahmen
|
29 |
draw.rectangle([
|
30 |
xmin * width,
|
31 |
ymin * height,
|
32 |
xmax * width,
|
33 |
ymax * height
|
34 |
+
], outline="#00FF00", width=7) # Neon green mit dicken Linien
|
35 |
return image
|
36 |
|
|
|
37 |
# Streamlit UI
|
38 |
st.title("Bildanalyse mit Gemini")
|
39 |
col1, col2 = st.columns(2)
|
|
|
44 |
|
45 |
if uploaded_file and object_name:
|
46 |
image = Image.open(uploaded_file)
|
47 |
+
width, height = image.size
|
48 |
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
|
49 |
|
50 |
if st.button("Analysieren"):
|
|
|
69 |
|
70 |
# Objekterkennung
|
71 |
detection_prompt = (
|
72 |
+
f"Gib exakt 4 Dezimalzahlen pro Box für alle {object_name} im Format "
|
73 |
+
"[ymin, xmin, ymax, xmax] als reine Python-Liste ohne weiteren Text. "
|
74 |
+
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
|
75 |
)
|
76 |
box_response = client.models.generate_content(
|
77 |
model="gemini-2.0-flash-exp",
|
78 |
contents=[detection_prompt, image_part]
|
79 |
)
|
|
|
80 |
|
81 |
+
# Debug-Ausgaben
|
82 |
+
st.write("**Raw API Response:**", box_response.text)
|
83 |
+
|
84 |
# Verarbeitung
|
85 |
+
try:
|
86 |
+
boxes = parse_list_boxes(box_response.text)
|
87 |
+
st.write("**Parsed Boxes:**", boxes)
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Parsing Error: {str(e)}")
|
90 |
+
boxes = []
|
91 |
+
|
92 |
annotated_image = image.copy()
|
93 |
|
94 |
if boxes:
|
95 |
annotated_image = draw_bounding_boxes(annotated_image, boxes)
|
96 |
result_text = f"{len(boxes)} {object_name} erkannt"
|
97 |
+
|
98 |
+
# Zoom auf erste Box
|
99 |
+
ymin, xmin, ymax, xmax = boxes[0]
|
100 |
+
zoom_area = (
|
101 |
+
max(0, int(xmin * width - 50)),
|
102 |
+
max(0, int(ymin * height - 50)),
|
103 |
+
min(width, int(xmax * width + 50)),
|
104 |
+
min(height, int(ymax * height + 50))
|
105 |
+
)
|
106 |
+
zoomed_image = annotated_image.crop(zoom_area)
|
107 |
+
|
108 |
else:
|
109 |
result_text = "Keine Objekte gefunden"
|
110 |
+
zoomed_image = None
|
111 |
|
112 |
# Ergebnisse anzeigen
|
113 |
with col2:
|
|
|
|
|
|
|
|
|
114 |
st.write("## Beschreibung:")
|
115 |
st.write(desc_response.text)
|
116 |
|
117 |
+
st.write("## Objekterkennung:")
|
118 |
+
st.write(result_text)
|
119 |
|
120 |
+
if boxes:
|
121 |
+
st.image(
|
122 |
+
[annotated_image, zoomed_image],
|
123 |
+
caption=["Gesamtbild", "Zoom auf Erkennung"],
|
124 |
+
width=400
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
st.image(annotated_image, caption="Keine Objekte erkannt", width=400)
|
128 |
+
|
129 |
except Exception as e:
|
130 |
st.error(f"Fehler: {str(e)}")
|