import os import re import io import streamlit as st from PIL import Image, ImageDraw from google import genai from google.genai import types # Hilfsfunktionen def parse_list_boxes(text): """Extrahiert Bounding Boxes aus dem Antworttext""" pattern = r'\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]' matches = re.findall(pattern, text) return [[float(m) for m in match] for match in matches] def draw_bounding_boxes(image, boxes): """Zeichnet Bounding Boxes auf das Bild""" draw = ImageDraw.Draw(image) width, height = image.size for box in boxes: ymin, xmin, ymax, xmax = box draw.rectangle([ xmin * width, ymin * height, xmax * width, ymax * height ], outline="red", width=3) return image # Streamlit UI st.title("Bildanalyse mit Gemini") col1, col2 = st.columns(2) with col1: uploaded_file = st.file_uploader("Bild hochladen", type=["jpg", "png", "jpeg"]) object_name = st.text_input("Objekt zur Erkennung", placeholder="z.B. 'Auto', 'Person'") if uploaded_file and object_name: image = Image.open(uploaded_file) st.image(image, caption="Hochgeladenes Bild", use_container_width=True) if st.button("Analysieren"): with st.spinner("Analysiere Bild..."): try: # Bildvorbereitung image_bytes = io.BytesIO() image.save(image_bytes, format=image.format) image_part = types.Part.from_bytes( data=image_bytes.getvalue(), mime_type=f"image/{image.format.lower()}" ) # API-Client client = genai.Client(api_key=os.getenv("KEY")) # Bildbeschreibung desc_response = client.models.generate_content( model="gemini-2.0-flash-exp", contents=["Beschreibe dieses Bild detailliert.", image_part] ) # Objekterkennung detection_prompt = ( f"Gib alle Bounding Boxes für {object_name} im Format " "[ymin, xmin, ymax, xmax] als Liste. Nur die Liste zurückgeben!" ) box_response = client.models.generate_content( model="gemini-2.0-flash-exp", contents=[detection_prompt, image_part] ) # Verarbeitung boxes = parse_list_boxes(box_response.text) annotated_image = image.copy() if boxes: annotated_image = draw_bounding_boxes(annotated_image, boxes) result_text = f"{len(boxes)} {object_name} erkannt" else: result_text = "Keine Objekte gefunden" # Ergebnisse anzeigen with col2: st.write("## Beschreibung:") st.write(desc_response.text) st.write("## Objekterkennung:") st.write(result_text) st.image(annotated_image, caption="Erkannte Objekte", use_column_width=True) except Exception as e: st.error(f"Fehler: {str(e)}")