Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,123 +5,112 @@ import streamlit as st
|
|
5 |
from PIL import Image, ImageDraw
|
6 |
from google import genai
|
7 |
from google.genai import types
|
|
|
8 |
|
9 |
-
#
|
10 |
def parse_list_boxes(text):
|
11 |
-
"""
|
12 |
pattern = r'\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]'
|
13 |
matches = re.findall(pattern, text)
|
14 |
return [[float(m) for m in match] for match in matches]
|
15 |
|
16 |
def draw_bounding_boxes(image, boxes):
|
17 |
-
"""
|
18 |
draw = ImageDraw.Draw(image)
|
19 |
width, height = image.size
|
20 |
|
21 |
for box in boxes:
|
22 |
-
# Sicherstellen, dass alle Werte zwischen 0-1 liegen
|
23 |
ymin = max(0.0, min(1.0, box[0]))
|
24 |
xmin = max(0.0, min(1.0, box[1]))
|
25 |
ymax = max(0.0, min(1.0, box[2]))
|
26 |
xmax = max(0.0, min(1.0, box[3]))
|
27 |
|
28 |
-
# Zeichne den Rahmen
|
29 |
draw.rectangle([
|
30 |
xmin * width,
|
31 |
ymin * height,
|
32 |
xmax * width,
|
33 |
ymax * height
|
34 |
-
], outline="#00FF00", width=
|
35 |
return image
|
36 |
|
37 |
# Streamlit UI
|
38 |
-
st.title("
|
39 |
col1, col2 = st.columns(2)
|
40 |
|
41 |
with col1:
|
42 |
-
uploaded_file = st.file_uploader("
|
43 |
-
|
44 |
-
|
45 |
-
if uploaded_file and object_name:
|
46 |
-
image = Image.open(uploaded_file)
|
47 |
-
width, height = image.size
|
48 |
-
st.image(image, caption="Hochgeladenes Bild", use_container_width=True)
|
49 |
|
|
|
50 |
if st.button("Analysieren"):
|
51 |
-
with st.spinner("Analysiere
|
52 |
try:
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
data=image_bytes.getvalue(),
|
58 |
-
mime_type=f"image/{image.format.lower()}"
|
59 |
-
)
|
60 |
|
61 |
-
#
|
62 |
client = genai.Client(api_key=os.getenv("KEY"))
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
"[ymin, xmin, ymax, xmax] als reine Python-Liste ohne weiteren Text. "
|
74 |
-
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
|
75 |
-
)
|
76 |
-
box_response = client.models.generate_content(
|
77 |
-
model="gemini-2.0-flash-exp",
|
78 |
-
contents=[detection_prompt, image_part]
|
79 |
-
)
|
80 |
-
|
81 |
-
# Verarbeitung
|
82 |
-
try:
|
83 |
-
boxes = parse_list_boxes(box_response.text)
|
84 |
-
st.write("**Parsed Boxes:**", boxes)
|
85 |
-
except Exception as e:
|
86 |
-
st.error(f"Parsing Error: {str(e)}")
|
87 |
-
boxes = []
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
max(0, int(ymin * height - 50)),
|
100 |
-
min(width, int(xmax * width + 50)),
|
101 |
-
min(height, int(ymax * height + 50))
|
102 |
)
|
103 |
-
zoomed_image = annotated_image.crop(zoom_area)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.write("## Objekterkennung:")
|
113 |
-
st.write(result_text)
|
114 |
-
|
115 |
if boxes:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
126 |
except Exception as e:
|
127 |
st.error(f"Fehler: {str(e)}")
|
|
|
5 |
from PIL import Image, ImageDraw
|
6 |
from google import genai
|
7 |
from google.genai import types
|
8 |
+
from pdf2image import convert_from_bytes
|
9 |
|
10 |
+
# Helper functions
|
11 |
def parse_list_boxes(text):
|
12 |
+
"""Extracts bounding boxes from response text"""
|
13 |
pattern = r'\[([\d\.]+),\s*([\d\.]+),\s*([\d\.]+),\s*([\d\.]+)\]'
|
14 |
matches = re.findall(pattern, text)
|
15 |
return [[float(m) for m in match] for match in matches]
|
16 |
|
17 |
def draw_bounding_boxes(image, boxes):
|
18 |
+
"""Draws bounding boxes on the image"""
|
19 |
draw = ImageDraw.Draw(image)
|
20 |
width, height = image.size
|
21 |
|
22 |
for box in boxes:
|
|
|
23 |
ymin = max(0.0, min(1.0, box[0]))
|
24 |
xmin = max(0.0, min(1.0, box[1]))
|
25 |
ymax = max(0.0, min(1.0, box[2]))
|
26 |
xmax = max(0.0, min(1.0, box[3]))
|
27 |
|
|
|
28 |
draw.rectangle([
|
29 |
xmin * width,
|
30 |
ymin * height,
|
31 |
xmax * width,
|
32 |
ymax * height
|
33 |
+
], outline="#00FF00", width=3)
|
34 |
return image
|
35 |
|
36 |
# Streamlit UI
|
37 |
+
st.title("PDF Themenerkennung mit Gemini")
|
38 |
col1, col2 = st.columns(2)
|
39 |
|
40 |
with col1:
|
41 |
+
uploaded_file = st.file_uploader("PDF hochladen", type=["pdf"])
|
42 |
+
topic_name = st.text_input("Thema zur Erkennung", placeholder="z.B. 'Überschrift', 'Tabelle', 'Absatz'")
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
if uploaded_file and topic_name:
|
45 |
if st.button("Analysieren"):
|
46 |
+
with st.spinner("Analysiere PDF..."):
|
47 |
try:
|
48 |
+
# Convert PDF to images
|
49 |
+
pdf_bytes = uploaded_file.read()
|
50 |
+
images = convert_from_bytes(pdf_bytes)
|
51 |
+
results = []
|
|
|
|
|
|
|
52 |
|
53 |
+
# Initialize client
|
54 |
client = genai.Client(api_key=os.getenv("KEY"))
|
55 |
|
56 |
+
for page_num, image in enumerate(images):
|
57 |
+
# Prepare image
|
58 |
+
img_byte_arr = io.BytesIO()
|
59 |
+
image.save(img_byte_arr, format='PNG')
|
60 |
+
|
61 |
+
image_part = types.Part.from_bytes(
|
62 |
+
data=img_byte_arr.getvalue(),
|
63 |
+
mime_type="image/png"
|
64 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Get topic boxes
|
67 |
+
detection_prompt = (
|
68 |
+
f"Identifiziere alle {topic_name} Bereiche in diesem Dokument. "
|
69 |
+
"Gib Bounding Boxes im Format [ymin, xmin, ymax, xmax] "
|
70 |
+
"als reine Python-Liste ohne weiteren Text. "
|
71 |
+
"Beispiel: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
|
72 |
+
)
|
73 |
+
box_response = client.models.generate_content(
|
74 |
+
model="gemini-2.0-flash-exp",
|
75 |
+
contents=[detection_prompt, image_part]
|
76 |
+
)
|
77 |
|
78 |
+
# Get description
|
79 |
+
desc_response = client.models.generate_content(
|
80 |
+
model="gemini-2.0-flash-exp",
|
81 |
+
contents=["Beschreibe diesen Dokumentenausschnitt detailliert.", image_part]
|
|
|
|
|
|
|
82 |
)
|
|
|
83 |
|
84 |
+
# Process boxes
|
85 |
+
try:
|
86 |
+
boxes = parse_list_boxes(box_response.text)
|
87 |
+
except Exception as e:
|
88 |
+
st.error(f"Fehler bei Seite {page_num+1}: {str(e)}")
|
89 |
+
boxes = []
|
90 |
|
91 |
+
# Draw boxes
|
92 |
+
annotated_image = image.copy()
|
|
|
|
|
|
|
|
|
93 |
if boxes:
|
94 |
+
annotated_image = draw_bounding_boxes(annotated_image, boxes)
|
95 |
+
|
96 |
+
results.append({
|
97 |
+
"page": page_num + 1,
|
98 |
+
"image": annotated_image,
|
99 |
+
"description": desc_response.text,
|
100 |
+
"boxes": len(boxes)
|
101 |
+
})
|
102 |
+
|
103 |
+
# Display results
|
104 |
+
with col2:
|
105 |
+
st.write(f"## Ergebnisse ({len(results)} Seiten)")
|
106 |
+
tabs = st.tabs([f"Seite {res['page']}" for res in results])
|
107 |
|
108 |
+
for tab, res in zip(tabs, results):
|
109 |
+
with tab:
|
110 |
+
st.image(res["image"],
|
111 |
+
caption=f"Seite {res['page']} - {res['boxes']} {topic_name} erkannt",
|
112 |
+
use_container_width=True)
|
113 |
+
st.write("**Beschreibung:**", res["description"])
|
114 |
+
|
115 |
except Exception as e:
|
116 |
st.error(f"Fehler: {str(e)}")
|